Microelectronics Reliability 62 (2016) 178-190

Contents lists available at ScienceDirect
MICROELECTRONICS
RELIABILITY
- VIIE Ty
T,

Microelectronics Reliability

AR

journal homepage: www.elsevier.com/locate/mr

Using instruction result locality and re-execution to mitigate silent
data corruptions

@ CrossMark

Alireza Tajary, Hamid R. Zarandi *

Department of Computer Engineering and Information Technology, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., Tehran, Iran

ARTICLE INFO ABSTRACT

Article history:

Received 17 October 2015

Received in revised form 3 February 2016
Accepted 23 March 2016

Available online 3 April 2016

In this paper, a method to mitigate silent data corruptions (SDCs) is proposed. This paper, first, shows and char-
acterizes instruction result locality based on several simulation results and next, proposes an architecture called
instruction value history table (VHT) to detect SDCs. In the case of fault detection, extra instruction redundant
execution is utilized to assure fault existence. If outcome of the new redundant execution is different from that
of previous one, a fault occurred, otherwise the first execution will be correct. In order to correct any detected
faults, third redundant execution of the instruction is performed. Having three values from three redundant in-
struction executions, makes the correction of the fault feasible. The main advantage of this method is to detect
any error which is not detectable by traditional protection codes like parity and SEC-DED. In other words, this
method detects SDCs or any multiple faults which are not detectable by protection codes. Various soft error in-
jections have been applied on Alpha processor for several PARSEC benchmarks. Experimental results show that

Keywords:

Silent data corruption
Error detection

Error correction

Soft error

Temporal redundancy

the method can detect up to 70% of injected SDCs.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The trends in technology scaling have led to an exponential growth in
the number of on-chip transistors and significant reductions in the volt-
age levels of a chip. However, the use of deep sub-micron VLSI technolo-
gies in the fabrication magnifies the sensitivity of processors to transient
and permanent faults [1] such as electromigration [1], stress migration
[1], time-dependent dielectric breakdown [1], and soft errors [2].

Soft errors have become an important factor in degrading the
reliability of current high-performance processors [3-8]. They occur
massively due to the electronic noises caused by energetic nuclear par-
ticles, such as alpha-particles, neutrons, and pions, from the environ-
ments [2,9,10]. Another side effect of current nano-scale technologies
is the increased likelihood of single event multiple upsets (MBUs) in
the processor internal registers and memory elements.

In the past, several different strategies have been investigated to
avoid, detect and recover soft errors [4,5,11-17]. Depending on whether
an active error is detected, corrected or not, three situations may take
place: 1) the error is detected and corrected by a fault-tolerant method,
2) the error is detected, but unrecovered by a fault-tolerant method, this
type is called detected unrecoverable errors (DUEs), and 3) the error is
not detected and escaped from fault detectors, this type is called silent
data corruptions (SDCs). SDCs are more serious than DUEs, since DUEs
are detected by a mechanism. There are also several evidences that
SDCs may even occur during the normal execution of a system [3,18,19].

* Corresponding author.

http://dx.doi.org/10.1016/j.microrel.2016.03.029
0026-2714/© 2016 Elsevier Ltd. All rights reserved.

In order to prevent, detect and correct SDCs, redundancy is used in
all previous methods [12,14,16,17,20-25]. Based on the nature of
SDCs, presenting a method, which is based on the behavior of system
is necessary to detect those parts of SDCs which are not covered by
available techniques with negligible false positive.

In this study, an architecture to detect and correct silent data corrup-
tion (SDC) errors during instruction execution cycle is proposed. The ar-
chitecture gets the behavior of system operations using the two
following methods: 1) instruction result history table and 2) instruction
redundant execution. After detection of an error, it is corrected using
third execution of instruction. The analysis of several experimental
studies on different benchmarks shows that about 80% of instructions
produce repeatable results. In other words, instruction results have
temporal value locality. Therefore, it is possible to provide a history
table that stores recent instruction results. The proposed detection
method is applied using this table before committing stage of a proces-
sor pipeline. Any mismatch in comparisons shows a potential fault dur-
ing instruction execution cycle. In order to assure existence of a fault
(checking potential fault), this instruction would be re-executed again.
If the outcome of the new execution is different from that of the previ-
ous one, the fault happens in one of the two instruction executions and
then the fault is detected, otherwise the first execution is correct. In
order to correct any detected faults, third execution of the instruction
is performed. Having three values from three redundant instruction ex-
ecutions makes the correction of the fault feasible. The main advantage
of this method is to detect any errors which are not detectable by tradi-
tional protection codes like parity and SEC-DED. In other words, this


http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2016.03.029&domain=pdf
http://dx.doi.org/10.1016/j.microrel.2016.03.029
http://dx.doi.org/10.1016/j.microrel.2016.03.029
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/mr

A. Tajary, HR. Zarandi / Microelectronics Reliability 62 (2016) 178-190 179

method detects SDCs or any of the multiple faults which are not detect-
able by protection codes. Various soft error injections have been per-
formed on Alpha processor for 11 PARSEC benchmarks. Experimental
results show that the method detects up to 70% of injected SDCs with
about 2% performance overhead. Here, 70% of SDCs can be detected with-
out any care to data bit pattern checking. It has been shown that SDCs es-
cape from traditional error detection mechanisms which are based on
data bit patterns like parity and coding techniques. In other words, the
proposed method can detect 70% of all undetected errors, which may es-
cape from other previous methods. Hence, the method is orthogonal to all
other error detection mechanisms like coding techniques, and can also be
used along with other methods to improve whole detection coverage.

The rest of the present study is structured as follows: Section 2 re-
views the existing literature. Section 3 presents the proposed method
and discusses the implementation of the architecture in a baseline
core. Detailed evaluation of the proposed method in terms of fault de-
tection coverage and overheads will be presented in Section 4. Finally,
a summary of findings will be provided in Section 5.

2. Related works

Several methods have been presented for tolerating transient faults
in processors trying to provide perfect fault coverage [11,13-15,20,24,
28,29]. These methods can be divided into three categories [14]: redun-
dant execution [13], anomaly detection [15], and dynamic verification
[11,20]. There are furthermore some speculative methods trying to pro-
vide acceptable fault coverage with low overhead [27,30].

2.1. Redundant execution-based methods

Redundant execution utilizes dual or triple module redundancy to
cope with soft errors. In these methods, two copies of a thread will be
executed and their results will be compared. Because soft errors are
transient, the result of the second execution will be matched. These
methods can be categorized as time-based redundant execution and
hardware-based redundant execution. In time-based redundant execu-
tion, one process or thread is executed twice on an individual processor,
however, in hardware-based redundant execution the process or thread
will be executed on two individual processors. For example, Lock
Stepping uses two processors (or cores) to run the same instructions;
and the results of these instructions are compared before the result
commitment. At least if a conflict is observed during comparison, the
error will be announced. Therefore, the result of running threads will
not be committed; and the corresponding instruction will be executed
again. Several industrial systems utilize this method for the purpose of
fault tolerance, such as mainframes [31], the Tandem S2 [32], the HP
NonStop series [33], and the Boeing 777 [34]. Moreover, Virtual Lock
Stepping [35] is a new version of lock stepping, which takes the advan-
tages of virtualization to implement lock-stepping for commodity pro-
cessors [35]. AR-SMT [24] and SRT [23] are two important fault-
detection techniques based on redundant multithreading [23,24]. The
processor model used in these methods is the SMT (Simultaneous
Multi-Threading) architecture. An SMT processor has more than one
thread context, thus multiple threads can be run simultaneously on
the processor [23]. AR-SMT and SRT use two threads for error detection.
The first one, called active thread, runs instructions, puts its results in a
buffer, and continues execution. After a delay the second one, called re-
dundant thread reaches that instructions, runs them, and checks its re-
sults with those in the buffer. If a conflict can be found in the results,
there is a potential of transient error. Time overhead of SRT is less
than AR-SMT, since in SRT methods there are some queues between ac-
tive and redundant threads that facilitate redundant-thread execution.
CRT [21] and CRTR [13] methods are another variation of SRT for
multicore processors. CRT uses two cores: one for active thread and
the other for redundant thread. CRTR is an enhanced version of CRT,
which is enriched with error correction capability. Finally,

fingerprinting [29] compares the results of instructions after a number
of instructions. There is a fingerprint for each processor, and the result
of each instruction changes this fingerprint. The bandwidth of compar-
ison is lower than Lock Stepping; however, the detection latency is
higher than it [29]. These methods are suitable for multicore processors,
since current desktop applications cannot simultaneously exploit all
available resources in multicore processors.

2.2. Dynamic verification-based methods

These approaches use dedicated hardware and software checkers to
verify the validity of specific invariants in execution of threads that are
supposed to be true in error-free execution [11,14,20,36]. To have
high fault detection coverage, the invariants should be comprehensive.
Dynamic verification was firstly introduced in dynamic implementation
verification architecture (DIVA) [11]. DIVA uses a simple checker core to
detect errors in a superscalar core. This method is a low-cost solution for
complex superscalar processors because the checker has a small area
overhead (6% for an Alpha 21264 processor [11]). However, cores in
multicore processors used for server applications are simple and scalar.
Therefore, the complexity of checker significantly increases the hard-
ware overhead. Moreover, there are some methods which use instruc-
tion reuse [37] to detect fault in processors [38-40]. These methods
store the operands and the outputs of instructions to verify the output
of their next executions with those of operands.

2.3. Anomaly detection-based methods

These methods monitor the software behavior by low-cost hard-
ware and software monitors to find anomalous treatment [15]. Al-
though these methods have a low performance overhead, they impose
a high fault detection latency. For example, in SWAT [14], to obtain
98% fault detection coverage, the fault detection latency is in the order
of 10 billion cycles. Therefore, these methods are good for long running
threads and not suitable for the threads with a low execution time. In
server applications, there are some long running threads, however the
execution time of request processing threads (or processes) is small
and these methods cannot be used to detect fault. Therefore, the execu-
tion of thread will be finished before converting the effect of error to an
anomaly treatment.

2.4. Speculative fault detection methods

Prior methods use hardware of temporal redundancy for fault detec-
tion, and therefore have a significant overhead on hardware or perfor-
mance of the processor. They intend to provide perfect fault coverage
in the highly specialized servers and mission critical applications that
require complete protection against transient faults. However, for desk-
top and commodity servers, processor manufacturers try to trade-off
hardware and performance costs with reliability [27]. To predict tran-
sient faults, common architectural structures in superscalar processors
like branch predictor are used. With 10% performance overhead, 34%
of silent data corruption faults are detected [27].The method proposed
in [41] uses speculation for memory error detection. There are some
methods [42,43] which use value prediction [44-47] to provide fault
tolerance and reliability in processors. The method proposed in [42]
uses a table with more than 1 MB capacity for fault detection. The meth-
od proposed in [43] by means of a sophisticated value predictor tries to
minimize AVF based on the detection of faults for instructions with a
high latency in the pipeline.

3. The proposed method
The present study is motivated by the fact that produced result for

destination operand of each program instruction, has temporal locality
to previous runs of this instruction. This fact is known as value locality,



Download English Version:

https://daneshyari.com/en/article/544532

Download Persian Version:

https://daneshyari.com/article/544532

Daneshyari.com


https://daneshyari.com/en/article/544532
https://daneshyari.com/article/544532
https://daneshyari.com

