

Available online at www.sciencedirect.com

Procedia

Energy Procedia 114 (2017) 834 - 839

13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14-18 November 2016, Lausanne, Switzerland

Modeling solid-liquid equilibrium of the NH₃-CO₂-SO₂-K₂SO₄-H₂O system and its application to combined capture of CO₂ and SO₂ using aqueous ammonia

Guojie Qi, Shujuan Wang*

Department of Thermal Engineering, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory for CO₂ Utilization and Reduction Technology, Tsinghua University, Beijing 10084, China

Abstract

It is of significance to intensively investigate the solid-liquid equilibrium of the NH₃-CO₂-SO₂-K₂SO₄-H₂O system to assess the novel aqueous NH₃ based CO₂ and SO₂ combined capture process proposed in our previous work. In this work, the solubility of K₂SO₄ in aqueous NH₃ at various temperatures, CO₂ and SO₂ loadings, and NH₃ concentrations was predicted using Aspen Plus with a developed thermodynamic model package, which can accurately simulate the vapor-liquid equilibrium and the solid-liquid equilibrium of the combined CO₂ and SO₂ capture system. The results indicate that the solubility of K₂SO₄ increases with temperature and CO₂ loading, but decreases with NH₃ concentration. The precipitation starting point of K₂SO₄ shift to higher temperature with the increasing of SO₂ loading and NH₃ concentration. It is favorable to collect K₂SO₄ precipitates at lower CO₂ loading and temperature, and higher SO₂ loading and NH₃ concentration.

© 2017 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the organizing committee of GHGT-13.

Keywords: Solid-liquid equilibrium; combined capture; CO₂; SO₂; K₂SO₄; Aspen Plus;

1. Introduction

Carbon dioxide (CO_2) and sulfur dioxide (SO_2) are two of the main impurities from coal-fired power stations, which could be captured by flue-gas desulfurization (FGD) system and post-combustion CO_2 capture (PCC) facility [1,2,3]. However, both FGD and PCC systems are very expensive, and cause significant reduction of the power

^{*} A/Prof. Shujuan Wang. Tel: +86-10-62773154. *E-mail : wangshuj@tsinghua.edu.cn*

station efficiency [4]. Aqueous ammonia (NH₃), as an alternative chemical absorbent, has greatly potential to efficiently capture CO₂ and SO₂ together [5,6]. A novel post-combustion CO₂ and SO₂ combined capture process (without typical FGD system) using aqueous ammonia was proposed in our previous work, as shown in Figure 1, in that both CO₂ and SO₂ can be captured in one absorber, the CO₂ related content in CO₂ and SO₂ enriched solvent can be thermally regenerated in a stripper, and the SO₂ related content can be removed from the rich solvent by integrated sulfite forced oxidation and sulfate precipitation process [7].

Fig. 1. Proposed combined CO2 and SO2 capture process without FGD system.

In our previous work, the potassium additives (e.g. K_2SO_4) are proved and selected as the media for SO_2 content removal in the combined capture process [5]. However, the detailed study on the solubility of potassium salts in the CO_2 and SO_2 loaded aqueous NH₃ solvent is lacking in literature. Hence, it is of significance to intensively investigate the solid-liquid equilibrium of the NH₃-CO₂-SO₂-K₂SO₄-H₂O system and confirm the feasibility of its application in the combined capture of CO_2 and SO_2 using aqueous NH₃.

In this work, a solid-liquid equilibrium model was built using the Aspen Plus with our developed thermodynamic model package for combined CO₂ and SO₂ capture. The package can accurately calculate the solubility of K_2SO_4 , K_2SO_3 , K_2CO_3 , $KHCO_3$, $(NH_4)_2SO_4$, $(NH_4)_2SO_3$, and NH_4HCO_3 between 0 to 100 °C, as shown in Figure 2.

Fig. 2. Solid-liquid equilibrium model validation.

Download English Version:

https://daneshyari.com/en/article/5445500

Download Persian Version:

https://daneshyari.com/article/5445500

Daneshyari.com