

Available online at www.sciencedirect.com

ScienceDirect

Energy Procedia 109 (2017) 261 - 269

International Conference on Recent Advancement in Air Conditioning and Refrigeration, RAAR 2016, 10-12 November 2016, Bhubaneswar, India

Exergy Based Analysis of LiCl-H₂O Absorption Cooling System

Jatin Patela*, Bhargav Pandyab, Anurag Mudgalc

a.b.c.Department of Mechanical Engineering, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat 382007, India

Abstract

A thermodynamic analysis of single effect LiCl- H_2O vapour absorption cooling system of 1 TR capacity is conducted based on first and second laws. Mathematical models derived from thermodynamics theory, are employed in engineering equation solver to perform the calculations. It is found that maximum exergy destruction in system occurs in the absorber and generator while the pump and the expansion valve have the lowest. A performance comparison between LiCl- H_2O and LiBr- H_2O absorption system is also evaluated under identical operating conditions. It is found that LiCl- H_2O working pair performs thermodynamically better compared to LiBr- H_2O in vapour absorption cooling system.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the organizing committee of RAAR 2016.

Keywords: VARS, LiCl-H₂O, LiBr-H₂O, Exergy, Exergetic efficiency

1. Introduction

Absorption system is becoming more popular nowadays because it is heat driven system instead of conventional compressing chillers which are work driven. Vapour absorption refrigeration system (VARS) is the optimum alternative for vapour compression chiller. VARS can also utilize non-conventional energy i.e. solar energy, biomass, geothermal energy etc. VARS performance is affected by the type of absorbent-refrigerant pair that has been chosen. There are limited pairs available for VARS, in which generally used pairs are LiBr-H₂O and NH₃-H₂O [1]. NH₃-H₂O

^{*} Corresponding author. Tel.: +919428415422; fax: +917923275030. E-mail address: jrpmech@gmail.com

absorption system is more complicated as it requires separate rectifier mechanism to remove water vapour from refrigerant vapour, whereas main problem occurs in LiBr-H₂O system is the crystallization [1]. Current research work focuses the potential refrigerant-absorbent pair for VARS. LiCl-H₂O pair is one of the good options for VARS working pair as it has advantages of triple state point, long term stability and cost, compared to LiBr-H₂O [2]. There is a study available for thermodynamic design data for double effect LiCl-H₂O absorption system and comparison for the performance of LiCl-H₂O and LiBr-H₂O absorption system and it is found that COP with LiCl-H₂O is better than that of LiBr-H₂O system [3]. Feasible range for each operating parameters and possible combination of operating temperature for LiCl-H₂O system has been also evaluated [4]. Experimental investigation of intermittent LiCl-H₂O absorption cycle has been performed and it is found that that LiCl-H₂O system can operate with low temperature heat source [5]. There has been recently developed novel absorption system with LiCl-H₂O pair in the high pressure cycle and LiBr-H₂O pair in the low pressure cycle [6]. In this study three different heat source utilization mode has been considered i.e. two parallel modes and one series mode and it is concluded that intermediate pressure has a large influence upon system performance. Many literatures are available for second law analysis for LiBr-H₂O absorption system [7-11] and NH₃-H₂O [12-13] VARS. Very few literatures are available on second law analysis of LiCl-H₂O absorption system [14-15]. Crystallization is the major issue in any salt based aqueous solution, so to prevent this phenomenon; LiCl-H₂O pair operator has to choose operating parameters in optimistic range. The detailed exergy analysis is carried out in the present work and the optimized operating parameters are suggested for LiCL-H₂O VARS.

Nomenclature			
COP	coefficient of performance	E	evaporator
e	Specific exergy (kJ/kg)	G	Generator
h	specific enthalpy (kJ/kg)	in	inlet stream
• m	mass flow rate (kg/s)	out	outlet stream
$\overset{\bullet}{\mathcal{Q}}$	heat load (kW)	0	dead state (ambient)
S	specific entropy (kJ/kg K)	P	pump
T	temperature (K)	r	refrigerant
• W	pump work (kW)	REXP	refrigerant expansion valve
η	efficiency	SEXP	solution expansion valve
<u>Δ</u> ψ	exergy destruction (kW)	SHX	solution heat exchanger
Subscripts		SS	strong solution
A	Absorber	sys	system
C	Condenser	WS	weak solution

2. System Description

The schematic diagram of the LiCl-Water vapour absorption cooling system is shown in Fig. 1. Main components of the system are generator, evaporator, condenser, absorber, solution pump, solution heat exchanger and expansion valve. It uses water as refrigerant and LiCl solution as absorbent. As shown in Fig. 1, at absorber outlet (1), the solution is rich in refrigerant and pump forces the liquid through a solution heat exchanger to the generator (3). The temperature of the solution in the heat exchanger increases. In the generator thermal energy is added and refrigerant escape from the solution. The refrigerant vapour (7) flows to the condenser, where the refrigerant gets condensed. The condensed refrigerant (8) flows through expansion valve to the evaporator (9). In the evaporator, the heat from the load evaporates the refrigerant, which flows back to the absorber (10). At the generator exit (4), the steam consists of absorbent-refrigerant solution, which is cooled in the heat exchanger. From points (6) to (1), the solution absorbs refrigerant vapour from the evaporator and rejects heat through a heat exchanger.

Download English Version:

https://daneshyari.com/en/article/5446015

Download Persian Version:

https://daneshyari.com/article/5446015

Daneshyari.com