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A novel silicon-controlled rectifier (SCR)-based device with very small snapback is proposed in this paper. New
features including an embedded gate-to-VDD PMOS (GDPMOS) and lateral n-p-n BJT are used to achieve low
trigger and high holding voltages suitable for electrostatic discharge (ESD) protection of 28-nmCMOS technology
with very narrow ESD operation windows. Measured results show an ESD operation window of less than 1 V.
TCAD simulation is also carried out to demonstrate the underlying physical mechanisms.

© 2016 Elsevier Ltd. All rights reserved.Keywords:
Electrostatic discharge (ESD)
Small snapback
Silicon-controlled rectifier (SCR)

1. Introduction

With the continuously scaled down CMOS process, electrostatic dis-
charge (ESD) induced damages have become a serious reliability issue
[1]–[2]. In the advanced CMOS processes, such as the 28-nm technology
node, the trigger voltage of ESD protection devices must be relatively
low due to the thin gate oxide, and the holding voltagemust be relative-
ly high to mitigate the risk of latch-up. With a 10% safety margin, the
ESD design window should be between 0.9 × TBV (transient gate
break down voltage) and 1.1 × VDD. For the 28-nm process, a typical
ESD design window in I/O pins is 2.8–8.4 V.

Silicon-controlled rectifier (SCR) is well known for its high robust-
ness, however the SCR has the drawbacks of relatively low holding volt-
age and high trigger voltage [3]. Modified methods have been reported
to resolve this problem [4–7]. For example, the high-holding-voltage
SCR (HHVSCR) was proposed in [8–10]. By inserting a P-drift region
and a second N-well in the SCR, the holding and trigger voltages of the
HHVSCR are around 5 V and 9 V, respectively. But such a snapback is
still too large to satisfy the ESD design window requirement of the 28-
nm CMOS process.

In this letter, a novel SCR with small snapback (SSSCR) realized in
the 28-nm CMOS process is proposed for effective and robust ESD
protection applications. Measurement results obtained from the trans-
mission line pulsing (TLP) tester are used to validate the device perfor-
mance, and TCAD simulation is carried out to share the insight of
device's behavior under the ESD stress condition.

2. Results and discussion

2.1. HHVSCR

The cross-sectional views of the conventional SCR and HHVSCR
structures fabricated in the 28-nm CMOS process are shown in
Fig. 1(a) and (b), respectively. By inserting a P-drift region and a second
N-well in the SCR, HHVSCR is formed [10].

The holding voltage varies with design parameters. D1 is the length
of P-drift region in P-well, and D2 is the length of P-drift region in the
second N-well. As can be seen from Fig. 2, the holding voltage increases
withD1 increasing. Theholding voltage of HHVSCR increases from5.3 to
7.3 V when D1 changes from 2 to 4 μm. It is mainly caused by the in-
crease of ESD current path between anode and cathode. Fig. 3 shows
the TLP testing results with three different D2 values. It is clear that D2
has less effect on the holding voltage than D1.

However, the trigger voltage is nearly 9 V, it is too high for the weak
gate of the 28-nm CMOS process. Therefore, a new structure is needed
to protect the device in 28-nm process. SSSCR is proposed and analyzed
in the following section.

2.2. SSSCR

The cross-sectional viewof SSSCR structure is shown in Fig. 1(c). The
SSSCR differs from the conventional SCR in the following two main as-
pects. A gate is placed above the N-well and connected to the anode
[4], and a second N-well is added and is interfaced to the P-well. Fig. 4
compares the TLP I-V curves measured from the SSSCR, HHVSCR, and
conventional SCR having the same device width of 30 μm. The ESD per-
formances of these devices are also summarized in Table 1. These
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structures have a similar normalized failure current of 43.3 mA/μm and
leakage currents at the nano-ampere level. For comparison, the normal-
ized failure current of the PMOSdevicewith embedded SCR proposed in
[7] is 28.6mA/μm. Among these three devices, only the SSSCRmeets the
ESD design window requirement for the 28-nm process. The conven-
tional SCR possesses a trigger voltage higher than the upper limit of
the ESD design window. It is because the triggering in these devices
requires the avalanche breakdown of the N-well/P-well junction. For
the SSSCR and HHVSCR, however, the triggering takes place at the N-
well/P+ junction, resulting in a smaller trigger voltage. The added
gate structure can induce the halo implants which consequently reduce
the trigger voltage further because the concentration of halo implants is
higher than that of N-well.

The channel length L of SSSCR is a key parameter that can be varied
to change the holding voltage. Fig. 5 shows the TLP testing results with
three different L values. As can be seen clearly from the inset of Fig. 5, the
trigger voltage is insensitive to L, but the holding voltage increases with
L decreasing. The holding voltage of SSSCR increases from 5.3 to 6.5 V
when L changes from 1 to 0.15 μm. Therefore, shrinking L can not only
save silicon area, but also increase the holding voltage. Note that the
SSSCR with L = 0.15 μm has a very small ESD operation window of
less than 1 V.

In order to explain the underlying physical mechanism of the effect
of L on the holding voltage, Fig. 6 is given to show the TCAD simulation
results. Fig. 6(a) depicts the current density contours at an anode cur-
rent of 10 mA with L = 0.5 μm, which indicates that the initial flow of
current in the SSSCR is through the P+-to-N-well-to-P+ (P-drift)
path. In this case, the ESD stress is released via the embedded GDPMOS.
Fig. 6(b) shows the current density contours at the same anode current
with L=1 μm. It can be found that the current flows further away from
the silicon surface when the channel length is increased. As a result, a
large portion of current is routed through the P+-to-N-well-to-P-
well-to-P+ (P-drift) path. This increases the potential of P-well, and fi-
nally the P-sub-N-well (the second N-well) diode becomes forward bi-
ased, leading to the turn-on of the lateral N-well-P-sub-N-well (NPN
bipolar). Therefore, increasing in the channel length turns on the SCR
path earlier and hence gives rise to a smaller holding voltage.

The I-V characteristic of SSSCR has also beenmeasuredwith different
temperatures to investigate temperature dependence of the holding

Fig. 1. Cross-sectional views of the (a) conventional SCR, (b) HHVSCR and (c) SSSCR
structures.

Fig. 2. TLP I-V data measured from the HHVSCR having three different D1 values.
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