

Available online at www.sciencedirect.com

ScienceDirect

Procedia Procedia

Energy Procedia 101 (2016) 89 - 96

71st Conference of the Italian Thermal Machines Engineering Association, ATI2016, 14-16 September 2016, Turin, Italy

Energy Valorization of Edible Organic Matter for Electrical, Thermal and Cooling Energy Generation: Part Two

O. Corigliano, G. Florio, P. Fragiacomo*

Department of Mechanical, Energy and Management Engineering
University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
* Corresponding author. Address: Via P. Bucci 87036 Arcavacata di Rende Cosenza - Italy,
Phone: +39 0984 494615, Fax: +39 0984 494673, e-mail address: petronilla.fragiacomo@unical.it

Abstract

This work focuses on energy recovery from residual organic biomass, particularly from food products in large distribution centers beyond their sell-by date and edibility, emphasizing the valorization of material originally considered as waste. Its recovery makes a valuable contribution to resources rationalization and to environmental sustainability.

An integrated system anaerobic reactor, primary plants for electricity and heat production (micro gas turbines, internal combustion engines and solid oxide fuel cells), refrigeration plants for cooling energy generation (absorption and compression cooling plants), fed with the aforementioned organic matter, is presented. The procedure of an integrated system designing is proposed in the first paper: Part One.

This second paper, Part Two, applies the previously mentioned procedure to a case study and presents the results of the various analyzes. Downstream, the matching "energy system-user" analysis is then carried out to assess the most appropriate energy supply strategy and therefore the choice of the most efficient primary plant. Finally, the knowledge of the global energies, of the consumption of biogas, and of the characterization of the organic fraction, allows the dimensioning of the anaerobic reactor and the determination of the quantity of organic matter to be processed for user purposes.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the Scientific Committee of ATI 2016.

Keywords: Alternative energy systems, organic matter, biogas, energy rationalization

^{*} Corresponding author. Tel.: +39 0984 494615; fax: +39 0984 494673. E-mail address: petronilla.fragiacomo@unical.it

Nomenclature		
Symbol	Description	Unit of measurement
PLF HLF wd sd P h I _{PES} I _{env} V SGP TVS OLR	Power Load Following Heat Load Following winter day type summer day type power time (hour) primary energy saving index environmental index Volume Specific Gas Production Total Volatile Solids Organic Load Rate volumetric flow rate mass flow rate Hydraulic Residence Time	[W] [h] [-] [kg _{CO2eq} /y] [m ³] [m /kg _{sub}] [kg _{TVS} /d] [kg _{sub} /(m · d)] [m /d] [kg/d] [kg/d] [d]
$\begin{array}{c} \eta \\ r_{th/el} \\ integr \\ sat \\ ext \\ USWOH \end{array}$	efficiency thermo-electric ratio external integration energy need satisfied by system external r urban solid waste organic fraction	[-] [-]
Subscri nom el th cool sub react	pt/superscript nominal electric term thermal term cooling term organic substrate reactor	

1. Introduction

Organic waste recovery, whose purpose is aimed at re-use, is a valuable contribution to resources rationalization and to environmental sustainability [1,2,3]. Organic residual matter, which is approximately 30 - 40 % of waste in general, when subjected to anaerobic digestion processes, enables the production of a considerable quantity of renewable biogas, which can be used for energy, helping to reduce use of fossil fuels and reducing waste production [4,5,6]. The biogas, then used to supply technologically advanced energy systems, adds to the current environmental sustainability for waste avoiding also energy efficiency and reduction of gaseous emissions [7,8,9,10,11,12].

This work focuses on energy recovery from residual organic biomass, particularly of food products.

An integrated system of anaerobic reactor/primary plants for electricity and heat production/refrigeration plants for cooling energy generation fed with the aforementioned organic matter, is proposed for organic valorization. The system, in trigeneration layout, is aimed at the energy autonomy of a user of the tertiary sector.

The present paper, Part Two, applies a design procedure of a self-sustained energy cycle, aimed at the valorization of edible organic fractions to a case study presented in Part One. This section presents the results of the various analysis aimed at assessing the most favorable solution, in order to provide for satisfaction of the user's energy requirements, in terms of plants combination and in terms of the most appropriate strategy of energy service. It presents the user energy profiles, emphasizing the most critical conditions in order to have the maximum

Download English Version:

https://daneshyari.com/en/article/5446440

Download Persian Version:

https://daneshyari.com/article/5446440

<u>Daneshyari.com</u>