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A B S T R A C T

Theoretical attempts to rationalize the strain anisotropy of crystalline systems in terms of dislocations often
include the calculation of contrast factors. However, the evaluation of such parameters can be cumbersome
because elastic properties and symmetry restraints must be simultaneously taken into account, especially when
calculating the distortion tensor and the elastic contributions in slip coordinate systems. In this study, a
dislocation-dependent coordinate system is introduced to obtain straightforward expressions for the evaluation of
individual contrast factors by a first principles approach. Therein, we report the contrast factors for KCl and NaCl
regarding edge and screw dislocations; a further analysis of their microstructure was carried out through the
modified Williamson-Hall method.

1. Introduction

Diffraction methods are commonly used to characterize the
microstructure of materials. X-ray diffractometry, for example, is a
powerful tool to study the shape, size and distribution of crystallites;
lattice faults and twinnings; and the arrangement and density of strain
dislocations [1–3]. All the above information is simultaneously
embedded within the sample's diffractogram, and thus several ap-
proaches to estimate apparent size parameters and mean square strain
values have been proposed along the last few decades. The
Williamson-Hall (WH) and the Warren-Averbach (WA) are two clas-
sical methods [4–8] that can describe the microstructure for bulk
materials. However, several assessments to obtain microstructural in-
formation have resulted in the lack of a monotonic behavior [9–11],
an effect which has been previously explained by strain anisotropy
[12]. To effectively decouple the sample's size and strain contribu-
tions, Ung�ar and Borb�ely [13] modified the WH and WA methods with
a scale transformation that accounts for strain anisotropy by making
use of the contrast factors (Chkl). The concept of a weight factor to
distinguish each dislocation was described by Krivoglaz [14] and
Wilkens [15], and further developed by Klimanek [16]. More recently,
the meaning of these parameters has been interpreted as the visibility
for each dislocation [17]. The accuracy and agreement of the micro-
structural parameters estimated by diffraction techniques is highly
improved as a result of using such contrast factors, and can even be

compared to those measurements carried out by transmission electron
microscopy [18].

A fundamental step to implement the modified WH and WA methods
relies on the calculation of individual contrast factors for each disloca-
tion. Even though a parametric evaluation of these parameters has been
previously implemented on cubic symmetries [19], its application does
not transition directly to materials with more limiting degrees of
freedom; that is, a parametric implementation gives rise to averaged
contrast factors only. While such approach is suitable for materials like
those featuring simple crystal Fmm3 structures (e.g. Cu, Ni, Ag), it turns
unreliable for more complex materials as it allows for non-physical slip-
systems to be carelessly quantified. Binary rock-salt (Fmm3) structures,
for example, show additional restrictions in order to preserve the crystal's
neutral charge, which consequently prevents some dislocations from
occurring. Therefore, the use of a first principles approach to calculate
individual contrast factors is necessary for such materials.

In this study, the Lekhnitskii complex potential [16,20] and the Stroh
dislocation eigenvalues [21] were used in conjunction with a proposed
dislocation-dependent coordinate system to obtain straightforward ex-
pressions for the computation of individual contrast factors. In particular,
the distortion tensor for cubic slip-systems is described using a stretched
coordinate system, which leads to the evaluation of the elastic compo-
nent of the contrast factors in a more simple way. Thus, the contrast
factors for binary Fm3mmaterials are calculated from first principles and
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used to characterize the microstructure of KCl and NaCl salts through a
modified WH analysis.

2. Theoretical basis

2.1. Modified Williamson-Hall method

The classic WH method [8] resolves both size (βp) and strain (βs)
broadening contributions on real crystals by taking advantage of their
different order dependence with respect to Bragg's angle (θ). The former
contribution occurs due to the finite size effects of the diffracting sys-
tem, while the later one arises from its lattice distortions. More
specifically,

~β ¼ 1
τ
þ 2 ζ ~d (1)

where ~β ¼ β cosðθÞ=λ and ~d ¼ 2 sinðθÞ=λ are respectively the integral
breadth and plane spacing, both terms described in a reciprocal space,
and λ is the source wavelength; τ is the apparent crystallite size as orig-
inally defined by Jones [4], while ζ is the apparent strain as indicated by
Stokes andWilson [5]. Both 1=τ and ζ correspond to the integral breadths
of peak profiles related to crystallite size and micro-strain, respectively.
In particular, τ was interpreted by Hall [6] as a characteristic length scale
for the lattice regions which diffract coherently within the system, and ζ
depends directly on the distribution curve which governs the system's
strain. If the distribution is uniform and isotropic then ζ ¼ 2ε, where ε is
the maximum relative displacement ðΔd=d≡Δ~d=~dÞ of a lattice point from
its ideal position. The modified WH method [13] broadens the scope of
the original approach into systems on which strain anisotropy is signif-
icant. This approach proposes a proper scaling factor δ ¼ ~d

ffiffiffiffi
C

p
instead of

~d as in eq. (1), with C being the average dislocation contrast factor. In
particular, ~βðδÞ is to take a quadratic form as in

~βðδÞ ¼ eβ0 þ eβ1δþ eβ2δ2 (2)

where eβ0≡1=τ0, eβ1≡2ζ0 and eβ2∝ ffiffiffiffi
Q

p
, where τ0 and ζ0 are the modified WH

parameters; Q is the correlation coefficient between adjacent lattice
points, often interpreted as the fluctuation Q ¼ 〈ρ2〉� 〈ρ〉2 of the dislo-
cation density, ρ, [15,22]. It is observed that eq. (2) can be reduced to a
linear case as in eq. (1) when Q is zero or negligible.

2.2. Contrast factors

The computation of the average contrast factor C from each individ-
ual Cn

hkl, as extensively described by Armstrong and Lynch [17], can be
performed as:

C≡〈C n
hkl〉 ¼

1
N

XN
n¼1

C n
hkl ¼

1
N

XN
n¼1

X
K;L¼1

G n
KLE

n
KL (3)

where K, L are the indexes for the reduced form of each 4-rank tensor,
and N is the total number of degenerate slip-systems (see Appendix 1). If
not all slip-systems are equally populated, appropriate weight factors
should be calculated for each system and included to the overall
ensemble [17]. Specifically, the right-hand side of eq. (3) is split into a
geometric component G≡GKL ¼ Gijkl and an elastic one E≡EKL ¼ Eijkl,
respectively described by:

Gijkl ¼ γi γj γk γl (4)

and

Eijkl ¼ 1
π
∫ 2π
0 Tij Tkl dφ (5)

with γ being the direction cosines between the scattering vector and the
slip coordinate system for a particular geometry and dislocation type (see
Ref. [17]). Tij and Tkl are the distortion tensors associated with the
displacement field of each dislocation, with fi; k ¼ 1; 2;3g and fj;
l ¼ 1;2g.

The calculation of the geometric components for each contrast factor
is relatively straightforward [21] and thus it is the evaluation of eq. (5)
which turns out computationally demanding. Even though most calcu-
lations like those carried out by Borb�ely et al. [23] make use of numerical
methods to perform this task, a closed-form for the distortion tensor can
be obtained by introducing a stretched coordinate system which readily
integrates information about a particular dislocation —this within the
Stroh-Lekhnitskii formalism. Moreover, Tij can be written as a linear
combination of the distortion displacements, which takes a closed,
symmetric form when expressed in this stretched coordinates as will be

Fig. 1. Slip (A) and stretched (B) coordinate systems for a particular sextic polynomial root
pα ¼ aþ ic. Geometrical relationships between both coordinate systems (C).

Fig. 2. Recorded diffractograms for a ready-made VO plaque and powder samples of KCl
and NaCl. Their respective COD card is included at the bottom of each plot as a reference.
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