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a b s t r a c t

State of health (SOH) estimation for batteries is a key component in the prognostics and health manage-
ment (PHM) of battery driven systems. Due to the complicated operating conditions, it is necessary to
implement the prognostics under uncertain situations. In this paper, a novel integrated approach based
on a mixture of Gaussian process (MGP) model and particle filtering (PF) is presented for lithium-ion
battery SOH estimation under uncertain conditions. Instead of directly assuming a certain state space
model for capacity degradation, in this paper, the distribution of the degradation process is learnt from
the inputs based on the available capacity monitoring data. To capture the time-varying degradation
behavior, the proposed method fuses the training data from different battery conditions as the multiple
inputs for the distribution learning using the MGP model. Then, a recursive updating of the distribution
parameters is conducted. By exploiting the distribution information of the degradation model parame-
ters, the PF can be implemented to predict the battery SOH. Experiments and comparison analysis are
provided to demonstrate the efficiency of the proposed approach.

Published by Elsevier Ltd.

1. Introduction

Recently, with the advantages of high energy densities, longev-
ity, and lightness, lithium-ion batteries have been playing a more
important role in electronics system energy supplies, and therefore
have begun to be widely used in military electronics, aerospace
avionics, portable devices and other automotive vehicles [1,2].
However, battery deterioration and battery failure are common
occurrences, which can lead to a reduction in systems perfor-
mance, result in increased costs and catastrophic failure [3].
Therefore, prognostics and health management (PHM) for elec-
tronic device has received increased attention to determine the
advent of systems failure and to mitigate system risk through the
evaluation of system reliability in terms of the current life-cycle
conditions [4,5].

Prognostics is the process used to predict the system’s remain-
ing useful life (RUL), which is defined as the period of time from the
present health state to failure. Therefore, the estimation of the
health state for batteries given the current system condition is

the core of the battery PHM, from which maintenance decisions
to efficiently mitigate risk can be made based on the actual battery
condition. With an increasing demand for life-cycle cost reduction
in battery-driven equipment and to provide useful prognostics
information in the reliability monitoring for battery systems health
management, indicators such as the state of life (SOL), the state-of-
charge (SOC) and the state-of-health (SOH) are commonly used to
describe the current health condition of lithium-ion batteries [6].
The SOL represents the remaining life of battery, which indicates
at what time the battery will need to be replaced. The SOC is usu-
ally defined as the ratio of battery’s remaining capacity to the max-
imum capacity. The estimation of the SOC is difficult as it depends
on many factors such as varying environmental conditions and
charge–discharge cycles. Unlike the SOC, the SOH is a subjective
measure so there is no consensus on its definition. However, it
can be viewed as an estimation which provides an indication of
the performance for battery status in its current condition, rather
than a measurement corresponding to a specific physical quality
[7]. Commonly, the battery SOH estimation can be determined by
calculating the ratio of the current impedance or capacity to its ini-
tial measurements. As considered in [23], the battery capacity per-
centages relative to its initial capacity are adopted for the SOH
estimation in this study.
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There are many valuable prognostics methods for battery SOC/
SOH estimation and RUL prediction [8–10]. Fuzzy logic with elec-
trochemical impedance spectroscopy (EIS) measurements has been
used to estimate the battery SOH [11,12]. Neural networks and
artificial intelligent methods have also been commonly used to
predict the batteries RUL [13]. Stochastic filtering approaches such
as Kalman filtering [14], extended Kalman filtering [15,16],
unscented filtering and Bayesian filtering [17–19] are other classi-
cal methods for battery SOH or SOC estimation. In general, stochas-
tic filtering methods for prognostics are based on the state process
or degradation model descriptions which can be used to capture
the system failure mechanisms, and have shown good performance
if the degradation model used accurately represents the actual sys-
tem behavior. However, in many practical battery use settings
there are uncertainties such as operating conditions, environmen-
tal conditions, and other inherent system uncertainties. Therefore,
in practice, it is difficult to obtain accurate state process models or
parameter descriptions, so the standard algorithm with filtering,
which lacks of consideration for uncertainties may lead to poor
reliability prediction. To address this issue, many approaches have
been proposed such as a prognostics algorithm based on a rele-
vance vector machine (RVM) and particle filtering for RUL predic-
tion of lithium-ion battery, in which the RVM is used to learn
nonlinear models from the experimental data [20,21]. He et al.
used a Bayesian Monte Carlo method and the Dempster–Shafer
theory (DST) to implement battery SOH prognostics and RUL esti-
mation [22]. In their method, the degradation model parameters
were treated as a dynamic process and the DST was used to initial-
ize the capacity degradation model parameters from the training
data sets of different batteries. Then, using the linear transition
process model of parameters, the SOH estimation was obtained.
Because of the uncertainties in the battery operations, the param-
eters used to describe the degradation model may be different
under complex conditions. However, effective modeling for degra-
dation model parameters under uncertainty has gained less atten-
tion in previous research. Recently, with the need to consider
modeling flexibility and uncertainty representations, the use of
Gaussian process regression (GPR) has been investigated for
lithium-ion battery prognostics [23], where the degradation trends
are learnt from battery data sets with the combination of Gaussian
process functions. As an alternative to directly learning the degra-
dation trends, learning for representing the parameters process of
degradation model has not yet been fully investigated.

In this paper, to consider the uncertainties in battery prognos-
tics, a novel approach for lithium-ion battery SOH estimation is
presented through an integration of MGP model learning and par-
ticle filtering. The proposed method consists of two phases; firstly,
the MGP is used to learn the statistical properties of the degrada-
tion process model parameters using training data sets from uncer-
tain battery conditions, which the GPR is exploited to initialize the
distribution parameters for each component. Secondly, based on
the parameter distribution information for the degradation pro-
cess, particle filtering is exploited to obtain the battery SOH esti-
mation. To avoid full data storage and excessive computational
complexity, adaptive and recursively learning algorithms are
investigated. Finally, experiments based on the NASA battery data
sets are provided to demonstrate the performance of the new prog-
nostics method. The contributions in this paper are twofold: (1) the
prognostics algorithm for the lithium-ion battery SOH estimation
is developed by combining the conditions from different batteries;
(2) the proposed method implements particle filtering with distri-
bution learning of the multimode process under uncertainty.

The remainder of this paper is organized as follows. In Section 2,
the problems with the SOH estimation for lithium-ion battery
prognostics under uncertainty are described. Then, an overview
of Bayesian estimation and particle filtering are provided in

Section 3. In Section 4, the prediction method which incorporates
MGP learning and PF is developed. Experiments and analysis are
given in Section 5 to demonstrate the performance of proposed
prognostics algorithm. Finally, conclusions are drawn in Section 6.

2. Problem statement

Due to many complicated factors such as the battery operating
environment, assembly technology, material properties, and initial
conditions, the actual battery capacity degradation processes are
different [24]. Therefore, battery prognostics are significantly
affected by uncertainties. To track batteries capacity fading, the
exponential model expressed by (1) is commonly used to represent
the battery capacity degradation trends in many cases [25].

Model I : Q ¼ a � expðb � lÞ þ g � expðk � lÞ ð1Þ

where Q is the capacity of the battery and l is the cycle number. The
degradation model parameters are a; b; g and k, where a and b
capture the internal impedance, and g and k are related to the aging
rate. Unfortunately, overfitting usually occurs because of the com-
plex expression in model (1), and extrapolations of the model
may result in poor performances. This is because the capacity
degradation model is only an empirical approximation of the actual
dynamic degradation, making it difficult to accurately model the
parameter process in advance, meaning that modeling errors
always occur. On the other hand, because of the uncertain environ-
ment and operational conditions, the degradation model parame-
ters which characterize the battery conditions are random and
usually have a non-linear transition. In addition, different degrada-
tion conditions can make large difference, which means that the
dynamic degradation processes are difficult to model by using cer-
tain space state models. Further, there is no universally accepted
best model for the degradation parameters [26]. Therefore, estab-
lishing an effective representation for the degradation process
under uncertainties is the key to battery prognostics.

Most popular methods used to deal with batteries prognostics
under uncertainty are based on data-driven and model-based
methods [27,28]. Data-driven methods attempt to directly learn
the battery degradation trends from the obtained measurement
data. However, it is difficult to exploit the monitored data from dif-
ferent batteries in complex conditions and some regressors can be
easily affected by the extreme data which usually appears near the
self-recharge cycles as the battery capacity fades. Using offline
learning, which takes advantage of the full historical monitoring
data, the prognostics algorithm has a heavy computational burden
[9]. Another methods assume a certain degradation parameters
model, so classical filter methods can be exploited to predict the
battery SOH, but the prediction performance can be affected by
the gap between the assumed model and the actual degradation
process. Although some hybrid approaches which incorporate pat-
terns or models identification into the stochastic filter can make
some improvements, the complicated and non-linear transition
of the degradation process parameter under uncertainty which
are very common in practice lack full consideration. To capture
the time-varying degradation process effectively, a statistical
description of the degradation process parameters through the
exploitation of information from various battery conditions needs
to be considered in the degradation process modeling. The battery
SOH can then be estimated using non-linear filtering.

3. Bayesian estimation and particle filter

The particle filter is a Bayesian-based recursive estimator which
is implemented through a sequential Monte-Carlo method with a
resampling technique. In practice, many dynamic processes can
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