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A B S T R A C T S

The Gibbs free energy model was generalized to predict the phase stability of Mo, Ru, Y and Sc at all size range
from nanometer to bulk size. The size-, shape- and temperature-dependent phase diagrams of Mo, Ru, Y and Sc
were firstly computed to explain the corresponding experimental observations, including the latest one on Ru
nanoparticles. Especially, we re-confirmed and summarized that there exists a general law for the stable phases
of metal nanoparticles: for body-centered-cubic (BCC) metals (eg. Mo), there exists face-centered-cubic (FCC)
phase at small size; for a kind of hexagonal-close-packed (HCP) metals (eg. Ru), they can transform into FCC at
small size; for the other kind of HCP metals (eg. Sc or Y), they can change to BCC at high temperature (Y at 1754
K, and Sc at 1588 K) but to FCC at small size. This work establishes a map of the evolution of the structures from
macro to nanoscale.

1. Introduction

Nanoparticles have attracted the attention of researchers in differ-
ent fields. Due to large surface-to-volume ratio and high fraction of
undercoordinated atoms at surface [1], nanoparticles show unique
properties depending on the particle size and shape [2–5], such as
melting temperature [6,7], cohesive energy [8,9] and order-disorder
transition [10,11].

Structure transition is an important phenomenon in solids, while
the transition at nanoscale is different from the bulk due to surface
effect. Some stable phases present at nanoscale though does not exist in
bulk materials. Kim et al.[8] prepared the stable face-centered-cubic
(FCC) Mo nanoparticles in the size of 4 nm, although the FCC is
unstable in bulk Mo. Kohei Kusada et al.[12] discovered the pure FCC
Ru nanoparticles with the size of 2–5.5 nm by simple chemical
reduction methods with different metal precursors. By annealing the
FCC Ru nanoparticles up to 723 K, Kusada proved that the FCC Ru
particles are stable when the size is smaller than a critical value.
Though the FCC does not exist in the bulk phase diagram, the FCC Ru
particles have been obtained because of the size effect. It is also
reported that the phase transitions from hexagonal-close-packed
(HCP) to body-centered-cubic (BCC) for Ti, Zr and Hf will take place
by increasing the temperature or the pressure [13–15]. Manna et al.
found that there exist structural transitions from HCP to FCC for Ti and
Zr when the crystal size decreases to several nanometers during the
high-energy ball milling process [16,17]. The transition from HCP to
FCC for nanosized Hf was also observed in the high-energy ball milling

experiments [18]. Similar phase transformations are also found in Nb
[19], W [20] and V nanoparticles [21].

Researchers use Gibbs free energy to study the structural transi-
tions of nanomaterials. Jiang et al.[22] used the size dependent surface
free energy and elastic energy to compute the Gibbs free energy
differences. Barnard et al.[23] developed a model for predicting the
phase transitions of nanoparticles by considering the contributions
from the surfaces, edges and corners to Gibbs free energy. Xiong and Qi
et al.[24,25] generalized the Debye model of the Helmholtz free energy
(HFE) for bulk materials to calculate the Gibbs free energy (GFE) of
nanoparticles.

In this work, the Gibbs free energy of nanoparticles is formulized to
describe the phase transitions of Mo nanoparticle (BCC is stable in bulk
Mo) and Ru nanoparticle (HCP is stable in bulk Ru). Furthermore, the
Gibbs free energies of Y and Sc are also calculated and their phase
transitions at nanoscale are predicted.

2. Model

According to Debye Model, the Helmholtz free energy can be
written as [24].

F = E +E −TSc D D (1)

where Ec is the cohesive energy. ED and SD is the lattice vibrational
energy and vibration entropy, respectively. In Debye model, ED and SD
can be expressed as
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where kB and Θ are Boltzmann constant and Debye temperature,
respectively. E =9k Θ/80 B is the energy of zero-point lattice vibrations.
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Θ/T 3 is the Debye function. The
Helmholtz free energy for bulk material can be written as
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Different from bulk material, nanoparticles have different values in
lattice vibrational energy, entropy, cohesive energy and Debye tem-
perature due to the dangling bonds existing on the surface. According
to the core-shell model, the total atoms of a nanoparticle are classified
as surface and inner atoms. Then the Helmholtz free energy for the
nanoparticle can be expressed as [24].

F = NE +(N − n)(E −TS ) + n(E −TS )n n D D D
s

D
s (5)

where N and n are the total and the surface atom number, respectively.
The inner atoms are regarded as the same as bulk atoms. Due to the
lower coordination, the outmost atomic layer is considered as the shell,
which exhibits different vibrational amplitude (x) and frequency (ω).
Sun [1] reported the relationship of x and ω between surface atoms and
bulk atoms as

x
x

= 1. 43s

b (6)

ω
ω

= 0. 404s

b (7)

By regarding the lattice vibration as a spring oscillator, the
vibrational energy of surface atoms (Evib

s ) and the entropy (Svib
s ) of

surface atoms are expressed as
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S = S +∆SD
s
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where the energy of zero-point lattice vibration energy is neglected in
Eq. (8). For ∆SD, the vibrational frequency change can be written as
∆S =3k ln ( )D B

ω
ω

b
s

in terms of the statistic mechanics. Accordingly, the

vibrational energy of surface atoms (Evib
s ) and entropy of surface atoms

(Svib
s ) are
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Then the Helmholtz free energy of nanoparticle is
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The number of the surface atoms can be computed as

n = παf Ni
−2/3 2/3 and the total number of nanoparticle atoms N = fi

d
D

3

3

[26], where d and D are the diameter of atoms and nanoparticles,
respectively. The fi is the packing faction related to crystal structures
(f =0. 74i for FCC and HCP structures and f =0. 68i for BCC structure).
The shape factor [27] α is used to describe the shape difference
between the spherical and other shape nanoparticles (α = 1 for
spherical nanocrystal to α = 1. 49 for tetrahedral nanoparticle). Thus

=n
N

απd
f Di

, and then we can get the Helmholtz free energy for a

nanoparticle
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where R=k NB A with NA is the Avogadro constant. The size, structure
and shape dependent cohesive energy of nanoparticles can be written
as [28].
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in which C is the structure related constant. Eb is the cohesive energy of
bulk material. According to Lindemann melting criterion, the relation-
ship of the melting temperature Tnm and the Debye temperature can be
given as follows [29–31].
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where Θb and Tbm denote the Debye temperature and the melting
temperature of bulk solid, respectively. For the melting temperature of
nanoparticles considering relaxation can be written as [32].
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then we have
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The Gibbs free energy of solids can be written as

G = F + PVm (18)

where P and Vm are the pressure and volume, respectively. For bulk
material, P can be neglected if there is no additional pressure. However
the pressure cannot be ignored due to the large value in terms of
Laplace-Young equation [33–35].

P = −4f
D (19)

where f denotes the surface stress f. can be computed approximately as
[24].
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in which к, Sm and Hm are the bulk values of compressibility, melting
entropy and melting enthalpy, respectively. Then we can predict the
Gibbs free energy of nanoparticles.

3. Results and discussions

The GFE of Mo, Ru, Y and Sc bulk materials with BCC, FCC and
HCP structures were calculated to study their structural transition.
Chung [36] reported the Voigt-Reuss-Hill (VRH) values to estimate the
bulk modulus B and Poisson ratio ν [37–39], and then obtained the
Debye temperature Θ as [40].
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and M is the atomic

weight. r0 is the equilibrium W-S radius, defined by =M/ρ4πr
3

0 . We
obtained the Debye temperatures of Ru, Sc and Y with HCP structures
in the same method. For FCC-Y, FCC-Ru and FCC-Sc, the elastic
constants are calculated by first principle method (see Support
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