Accepted Manuscript

Correlation between critical properties and magnetocaloric effect using phenomenological model in La_{0.7}Ca_{0.2}Ba_{0.1}MnO₃ compound

A. Ezaami, E. Sellami-Jmal, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, E.K. Hill

PII: S0022-3697(16)30828-9

DOI: 10.1016/j.jpcs.2017.05.022

Reference: PCS 8072

To appear in: Journal of Physics and Chemistry of Solids

Received Date: 13 October 2016

Revised Date: 4 March 2017

Accepted Date: 22 May 2017

Please cite this article as: A. Ezaami, E. Sellami-Jmal, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, E.K. Hlil, Correlation between critical properties and magnetocaloric effect using phenomenological model in La_{0.7}Ca_{0.2}Ba_{0.1}MnO₃ compound, *Journal of Physics and Chemistry of Solids* (2017), doi: 10.1016/j.jpcs.2017.05.022.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Correlation between critical properties and magnetocaloric effect using

phenomenological model in La_{0.7}Ca_{0.2}Ba_{0.1}MnO₃ compound

A. Ezaami¹, E. Sellami-Jmal¹, W. Cheikhrouhou-Koubaa¹, A. Cheikhrouhou¹, E.K. Hlil²

¹Loboratory of Technologies for Smarts Systems, Numeric Research Center, Sfax Technopark, BP 275, 3021

Sakiet-ezzit, Tunisia.

²Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9, France.

Abstract

This paper presents a theoretical work on magnetic and magnetocaloric properties of

La_{0.7}Ca_{0.2}Ba_{0.1}MnO₃ powder sample elaborated by high energy ball milling. Using the

phenomenological model, the magnetocaloric parameters such as the magnetic entropy

change ΔS_M and the relative cooling power RCP, have been determined from the

magnetization data as a function of temperature at several magnetic applied fields. In addition,

from the magnetocaloric results, such as $\Delta S_{max} \approx a (\mu_0 H)^n$ and $T_{peak} - T_C \approx b (\mu_0 H)^{1/\Delta}$, the

critical exponents values related to the magnetic transition have been determined. The

estimated results are close to those expected by the tricritical mean-field model. Furthermore,

using other various techniques (such as the modified Arrott plots, the Kouvel-Fisher method

and the critical isotherm analysis), the values of the ferromagnetic transition temperature T_C,

as well as the critical exponents β , γ and δ are simulated and compared with those obtained by

the theoretical model. A good agreement has been found in the vicinity of the Curie

temperature. The field and temperature dependent magnetization follow the scaling theory, and

all data fall on two distinct branches, one for T < Tc and the other for T > Tc, indicating that the

critical exponents obtained in this work are accurate.

Keywords: Critical behavior; Magnetic materials, Magnetic phase transition; Magnetocaloric

effect; Phenomenological model.

Corresponding author:

Asma EZAAMI

Tel/Fax: + 216 74 676 607

E-mail: ezaamiasma@yahoo.fr

1

Download English Version:

https://daneshyari.com/en/article/5447427

Download Persian Version:

https://daneshyari.com/article/5447427

<u>Daneshyari.com</u>