Contents lists available at ScienceDirect

Catalysis Today

journal homepage: www.elsevier.com/locate/cattod

Catalytic oxidation of ammonium ion in water with ozone over metal oxide catalysts

Sho-ichi Ichikawa^a, Lina Mahardiani^a, Yuichi Kamiya^{b,*}

^a Graduate School of Environmental Science, Hokkaido University, Nishi 5, Kita 10, Kita-ku, Sapporo 060-0810, Japan ^b Research Faculty of Environmental Earth Science, Hokkaido University, Nishi 5, Kita 10, Kita-ku, Sapporo 060-0810, Japan

ARTICLE INFO

Article history: Received 11 July 2013 Received in revised form 12 September 2013 Accepted 23 September 2013 Available online 16 October 2013

Keywords: Catalytic ozonation Ammonia Metal oxide catalysts Wastewater treatment Cobalt oxide

ABSTRACT

Oxidative decomposition of NH₄⁺ (10 mmol L⁻¹) with O₃ in water was studied at 333 K over a variety of metal oxide catalysts without pH control of the solution. Although MgO and NiO had the highest catalytic activities, large amounts of undesired NO₃⁻⁻ formed due to low selectivity to gaseous products as well as high activity. Co₃O₄, which was slightly less active than MgO and NiO, was the best catalyst in terms of activity, selectivity to gaseous products, and dissolution degree among the metal oxide catalysts studied. Over Co₃O₄, NH₄⁺ was selectively oxidized to N₂ with 88% selectivity in water, and the dissolution degree of Co₃O₄ was less than 1%. Fe₂O₃, SnO₂, Mn₃O₄, CuO, MgO, and Al₂O₃ were less selective to gaseous products or much less active for the reaction. The selectivities to gaseous products were strongly related to the standard enthalpy changes of formation per mol of oxygen atom (ΔH°_{f}) of the metal oxides. The metal oxide catalysts with low ΔH°_{f} , like Co₃O₄, showed high selectivity o gaseous products probably due to the low surface density of the active oxygen formed from O₃ on the catalysts. Chloride ions (Cl⁻) present in the reaction significantly accelerated the reaction rate for NH₄⁺ decomposition with O₃ in the presence of Co₃O₄. This was due to the involvement of Cl⁻ in the catalytic cycle. For instance, ClO⁻, which may form by the reaction of Cl⁻ with O₃ over Co₃O₄, could further oxidize NH₄⁺.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

High concentrations of ammonia (NH₃) and ammonium ion (NH₄⁺), which are collectively called ammonia nitrogen, in domestic, agricultural, and industrial wastewaters cause eutrophication of rivers, lakes, and epeiric seas. In addition, ammonia nitrogen in environmental water causes acute toxicity in fish species even if the concentration is less than 10 mg L⁻¹. Therefore, ammonia nitrogen needs to be removed from wastewater and preferably decomposed into harmless compounds. Current purification technology for wastewater containing ammonia nitrogen is aerobic biological treatment. However, this treatment method is not applicable to wastewater containing toxic compounds, like heavy metals, and NO₃⁻ that forms must be reduced to N₂ by anaerobic biodegradation. In addition, this treatment method has some disadvantages, such as the need for tight control of the pH, nutritional sources, and temperature of the wastewater and the need for long reaction times and large areas for installing water-purifier tanks.

A promising method complementing the biological treatment method is catalytic wet oxidation (CWO) of ammonia nitrogen in water with O₂ [1–11]. In 1985, Imamura et al. [1] first reported CWO of NH₃ in water over Ce-based mixed oxides. NH₃ oxidatively decomposes at 536 K and 4.0 MPa of O2 under strong-alkaline conditions (pH = 12) in the presence of an MnCeO_x catalyst. However, about 50 mg L⁻¹ of undesired, harmful NO₃⁻ forms, and the reaction does not proceed at all under neutral or acidic conditions. To conduct CWO of NH₃ under relatively mild reaction conditions, van Santen and co-workers have used supported Pt-group metal catalysts, and they have reported that the reaction proceeds below 473 K over Pt/graphite [3]. Its activity is one order of magnitude higher than the $MnCeO_x$ catalyst [1], and N_2 selectively forms at high temperature (453K). However, undesired by-products, including N₂O and NO₂⁻, form, and the catalyst is completely deactivated at relatively low temperature (<433 K) [3]. Taguchi and Okuhara [4,5] have systematically investigated the reactions over supported noble metal (Pt and Pd) catalysts at relatively low temperature (433 K), low pressure (0.5 MPa), and under mild acidic conditions (pH=5.5). They report that Pt/TiO_2 decomposes NH_3 into N₂ with 100% selectivity [4].

As mentioned above, CWO of NH₃ is quite attractive because NH₃ is selectively oxidized to N₂. However, previous reports show that CWO needs reaction temperatures \geq 423 K, even when noble metal catalysts are used. If the oxidative decomposition of ammonia nitrogen in water could be made to proceed below

^{*} Corresponding author. Tel.: +81 11 706 2217; fax: +81 11 706 2217. *E-mail address:* kamiya@ees.hokudai.ac.jp (Y. Kamiya).

^{0920-5861/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.cattod.2013.09.039

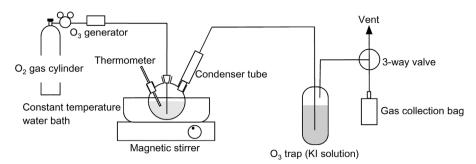


Fig. 1. Schematic illustration of the reaction apparatus used for catalytic ozonation of NH4⁺ in water.

373 K, purification of the polluted wastewater could be conducted without a pressure-resistant reactor, which is beneficial from a practical point of view.

Recently catalytic oxidation with O_3 , which is called catalytic ozonation, has attracted much attention as a method for purifying wastewater to decompose organic compounds in water as well as in gas-phase because the oxidation reaction proceeds near room temperature [12–22]. In fact, various metal oxides and supported precious metal catalysts have been examined for use in catalytic ozonation of organic compounds in water [12,13]. However, to the best of our knowledge, there is no report on the heterogeneous catalytic ozonation of NH₃ [23] and that with a homogeneous catalyst in water [24] have been investigated.

In the present study, to elucidate the catalytic features of metal oxide catalysts, oxidative decomposition of ammonia nitrogen with O₃ (Eq. (1)) in water was performed using various metal oxide catalysts. Since the reaction was conducted under mild acidic conditions and K_b of NH₃ (=[NH₄⁺][OH⁻]/[NH₃]) is 10^{-4.8}, almost all of the ammonia nitrogen was present as cationic NH₄⁺, not as NH₃, in the reaction solution under the present reaction conditions. In the catalytic ozonation of NH₄⁺, it is necessary to prevent both NO₃⁻ (Eq. (2)) and NO₂⁻ (Eq. (3)) forming because they are much more harmful than ammonia nitrogen. Thus, we carefully examined the formation of these compounds. The reaction mechanism and influence of Cl⁻ in the reaction solution on the catalytic ozonation over Co₃O₄ are discussed.

$$NH_4^+ + 3/2O_3 \rightarrow 1/2N_2 + 3/2H_2O + 3/2O_2 + H^+$$
(1)

$$NH_4^+ + 4O_3 \rightarrow NO_3^- + H_2O + 4O_2 + 2H^+$$
 (2)

 $NH_4^+ + 3O_3 \rightarrow NO_2^- + H_2O + 3O_2 + 2H^+$ (3)

2. Experiment

2.1. Catalyst preparation

Cobalt oxide (Co_3O_4) was prepared by a conventional precipitation method. An aqueous ammonia solution $(1.0 \text{ mol } L^{-1})$ was added to a solution of $Co(NO_3)_2$ $(1.0 \text{ mol } L^{-1})$ until the pH was 8. The suspension was allowed to stand for 10 min at room temperature. The precipitate that formed was separated by filtration, washed with distilled water, and dried at 373 K for two days. The solid was then calcined in air at 773 K for 4 h.

Nickel oxide (NiO) was prepared in a similar manner to that for cobalt oxide calcined at 773 K using a solution of $Ni(NO_3)_2$ instead of $Co(NO_3)_2$. Zinc oxide (ZnO) and iron oxide (Fe₂O₃) were pre-

pared in a similar manner to that for cobalt oxide, except that the pH of the solution was 7, and solutions of $Zn(NO_3)_2$ and $Fe(NO_3)_2$, respectively, were used.

Tin oxide (SnO₂) was prepared as follows. An aqueous ammonia solution $(0.5 \text{ mol } L^{-1})$ was added dropwise to an aqueous solution of SnCl₄ $(1.0 \text{ mol } L^{-1})$ until the pH of the solution was 8. The suspension was stirred at 353 K for 3 h. The precipitate that formed was separated by using centrifugation and dried in air at 383 K for 24 h, followed by calcination in air at 673 K for 2 h. Manganese oxide (Mn₃O₄) was prepared by using a precipitation method. An aqueous solution of Sndium hydroxide $(0.5 \text{ mol } L^{-1})$ was added to an aqueous solution of Mn(CH₃COO)₂ $(0.5 \text{ mol } L^{-1})$ until the pH of the solution was 8. The resulting suspension was stirred at room temperature for 12 h. The precipitate was collected by filtration, washed with distilled water, and dried at 373 K for 24 h. The solid was calcined in air at 673 K for 4 h.

Copper oxide (CuO) was prepared by calcining $Cu(NO_3)_2 \cdot 6H_2O$ in air at 673 K for 4 h. Magnesium oxide (MgO) and aluminum oxide (Al₂O₃) were supplied by Ube Materials Co. (Magnesia 500A) and Japan AEROSIL Co. (Aerosil[®] Alu C), respectively, and were calcined in air at 773 K for 5 h before use.

2.2. Characterization

Powder X-ray diffraction (XRD) patterns were recorded on an X-ray diffractometer (Rigaku, Miniflex) with Cu K α radiation ($\lambda = 0.154$ nm, 30 kV, 15 mA) at room temperature. Crystallite sizes were estimated by applying Scherrer's equation to the strongest diffraction line for each sample. Specific surface areas were estimated by applying the Brunauer–Emmett–Teller (BET) equation to an adsorption isotherm of N₂ at 77 K, which was acquired on a Belsorp-mini instrument (BEL Japan Inc.). The samples were dried under N₂ for 3 h at 473 K before the measurements.

2.3. Catalytic ozonation of NH_4^+ in water

Catalytic ozonation of NH4⁺ in water was performed by using the batch reactor shown in Fig. 1. An aqueous solution of NH₄Cl $(100 \text{ mL}, 10 \text{ mmol } \text{L}^{-1}, \text{ and } \text{pH} = 5.4)$ (Wako Pure Chem. Ind. Ltd.) was heated to 333K with vigorous stirring in a stream of O₂ $(100 \text{ cm}^3 \text{ min}^{-1})$. At 333 K, the catalyst powder (0.1 g) was added to the reaction solution, and the gas was changed to a mixture of O_3/O_2 (1.88 mmol L⁻¹ as O_3 , total flow rate = 100 cm³ min⁻¹) to start the catalytic ozonation of NH4⁺. O3 was generated from O₂ using an ozone generator (Tokyu Car Co. SO-03UN-OX). A portion of the reaction solution was periodically withdrawn, and the concentrations of NO₃⁻, NO₂⁻, and NH₄⁺ in the solution were determined by using two ion chromatographs (Tosoh Co. Ltd., IC-2001). A column containing an anion-exchange resin (TSK gel Super IC-AZ, Tosoh) and an aqueous solution of NaHCO₃ $(2.9 \text{ mmol } L^{-1})$ and Na₂CO₃ $(3.1 \text{ mmol } L^{-1})$ were used as stationary and mobile phases, respectively, for anion analysis. For cation

Download English Version:

https://daneshyari.com/en/article/54475

Download Persian Version:

https://daneshyari.com/article/54475

Daneshyari.com