Materials Chemistry and Physics 202 (2017) 245-250

Contents lists available at ScienceDirect

Materials Chemistry and Physics

journal homepage: www.elsevier.com/locate/matchemphys

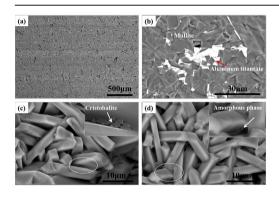
Controllable preparation and synthetic mechanism of mullite from the bauxite with Fe-rich oxide content

Mingwei Yan, Yong Li^{*}, Yang Sun, Ling Li, Shanghao Tong, Jialin Sun

School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

HIGHLIGHTS

• Mullite was successfully prepared using the bauxite with Fe-rich oxide content.


- Mullite content in the sintered bauxite reached up to 93 wt%.
- Fe³⁺ and Ti⁴⁺ ions entered into mullite and aluminum titanium.
- Synthetic mechanism for mullite was analyzed.

ARTICLE INFO

Article history: Received 9 June 2017 Received in revised form 8 September 2017 Accepted 10 September 2017 Available online 11 September 2017

Keywords: Controllable preparation Mullite Aluminum titantate Cristobalite Amorphous phase

G R A P H I C A L A B S T R A C T

ABSTRACT

To realize reuse of the bauxite with Fe-rich oxide content (w (Fe₂O₃) \geq 5.0%), ferric oxide in the bauxite must enter into some phases with high melting point such as mullite and aluminium titanium, avoiding its enrichment and transformation into phases with low melting point. In this paper, controllable preparation of mullite was attained using the bauxite with Fe-rich oxide content as raw materials, by adjusting its mass ratio of (Fe₂O₃+Al₂O₃)/SiO₂ to about 2.57 based on the theoretical design of Fe₂O₃-Al₂O₃ binary diagram and Al₂O₃-SiO₂-TiO₂ ternary diagram. Phase and synthetic mechanism of mullite from the Fe-rich bauxite have been characterized and analyzed by XRD, SEM, EDS and TOPASS refinement software. The results show that Fe³⁺ and Ti⁴⁺ ions enter into aluminum titantate and mullite in the form of solid solution. Crystal phases of the bauxite with Fe-rich oxide content after sintering are composed of mullite solid solution, aluminum titantate solid solution and cristobalite. A very little of amorphous phase exists between mullite crystals, and aluminum titantate solid solution is distributed dispersively and surrounded by mullite solid solution.

© 2017 Published by Elsevier B.V.

1. Introduction

Mullite has been widely used as ceramic materials and refractories due to many of its outstanding properties such as high

* Corresponding author. E-mail address: lirefractory@vip.sina.com (Y. Li). temperature strength, thermal shock resistance, low thermal expansion, low thermal and electric conductivity, and exceptional chemical stability under harsh chemical environments [1–3]. The pure mullite phase, which is the only binary compound in the Al₂O₃-SiO₂ system, is a solid solution whose composition may be written asAl₂[Al_{2+x}Si_{2-2x}]O_{10-x}(0.18 $\leq x \leq 0.88$)[3]. For crystal structure of mullite with different *x* values, 3:2 mullite (x = 0.25) is

http://dx.doi.org/10.1016/j.matchemphys.2017.09.017 0254-0584/© 2017 Published by Elsevier B.V.

a most stable phase [4].

The 3:2 mullite has a highly stable open structure [5,6] and it can accommodate a variety of transition metal ions into its structure as a solution, such as Ti⁴⁺, V³⁺, Cr³⁺, Mn²⁺, Mn³⁺, and Fe³⁺ [7–27]. The upper solubility limit is controlled by radii and oxidation states of the transition metal ions [7-9]: highest degrees of incorporation are observed for V^{3+} , Cr^{3+} and Fe^{3+} (approximately 11–13% wt. % as oxides) followed by Ti^{4+ 7,} [10–15]. Only very low amounts of Mn²⁺, Fe²⁺ and Co²⁺ ions can enter the mullite structure [14,21]. Several studies on the incorporation of metal-ion dopants in mullite have been given as follows. Murthy and Hummel [12] reported that solid solubility of TiO₂ in mullite is 4 wt% at 1600 °C and solid solubility of Fe₂O₃ in mullite 12 wt% at 1300 °C. Brownell [17] reported that with temperature rising, solid solubility of Fe₂O₃ in mullite increases continuously; mullite can accommodate Fe₂O₃ 7.6 wt% at 1300 °C. Based on phase relationship of Fe₂O₃-Al₂O₃-SiO₂ ternary diagram, Muan has worked out that Fe₂O₃ 10 wt % can incorporate into mullite under air condition. Schneider and Eberhard [18] have studied the effect of Fe₂O₃ on thermal expansion of mullite by means of high-temperature Guinier X-ray diffraction method, giving the result that solid solubility of Fe₂O₃ in mullite is 10.3 wt% at 900 °C. After studying natural mullite, Agrell and Smith [19] have found that the content of TiO₂ in mullite is about 0.55–2.27 wt%. Baudín et al. [20] have pointed out that solid solubility of TiO₂ in mullite is about 2.9 ± 0.2 wt%.

In recent years, with continuous exploitation of high quality bauxite, the existing problems have been increasingly revealed: bauxite resource is wasted greatly and its use ratio is less than 30%. which leads to a result that a large of ore-crushing and ores (Fe₂O₃>5.0 wt%) are left unused and are abandoned anywhere. The high-temperature industries, for instance, refractory industry require content of Fe₂O₃ in the calcined bauxite is below 2.5 wt%, considering that Fe₂O₃ will be transformed into Fe₃O₄ or FeO and further reacts with Al₂O₃ or SiO₂ to generate some phases with low melting point such as 2FeO•2Al₂O₃•5SiO₂ and 2FeO•SiO₂ [28]. The formation of those phases with low melting point can have a bad impact on service life of the calcined bauxite at high temperatures and may even endanger staff's lives. Therefore, to realize recycle of the bauxite with mid-low grade (Fe₂O₃ \geq 5.0 wt%), Fe₂O₃ in the bauxite with mid-low grade must be transferred into these phases with high melting point such as mullite and aluminum titanium, avoiding isolated distribution of Fe₂O₃ or its existence in the form of phases with low melting point. Based on analysis of the above literature, mullite can accommodate Fe₂O₃ and its solid solubility in mullite reaches up to 7-13 wt%, which undoubtedly provides a feasible scheme for recycle of the bauxite with mid-low grade. For this reason, in this paper, controllable preparation of mullite was attained using the bauxite with mid-low grade as raw materials, by adjusting its mass ratio of (Fe₂O₃+Al₂O₃)/SiO₂ to about 2.57 based on theoretical design of Fe₂O₃-Al₂O₃ binary diagram and Al₂O₃-SiO₂-TiO₂ ternary diagram. Phase characterization and synthetic mechanism of mullite from the bauxite with Fe-rich oxide content have been analyzed by XRD, SEM, EDS and TOPASS refinement software.

2. Theoretical design

Both Fe₂O₃ and Al₂O₃ belong to sesquioxide and the difference between their metal ionic radius is not large. Therefore, Fe₂O₃ and Al₂O₃ can accommodate each other and form solid solutions such as Fe₂O₃(ss) and Al₂O₃(ss). Solid solubility of Fe₂O₃ in Al₂O₃ is more than 10 wt% ranging from 1500 °C to 1600 °C, as shown in Fig. 1. Ignoring the influence of impurities such as MgO, CaO, Na₂O and K₂O on mullite, the system of mullite prepared from the bauxite with mid-low grade can be expressed as Al₂O₃-SiO₂-TiO₂ ternary

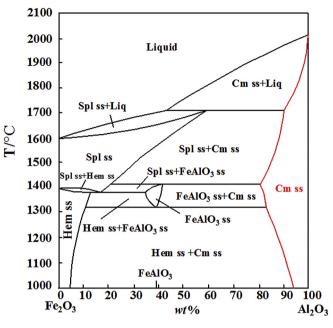


Fig. 1. Phase diagram of Fe₂O₃-Al₂O₃ binary system [29].

system. According to Al_2O_3 -SiO_2-TiO_2 ternary diagram (Fig. 2), to acquire above 90 wt% of mullite, composition points should be located within rich-mullite phase region, i.e. $3Al_2O_3$ ·2SiO_2-SiO_2- Al_2O_3 ·TiO₂ subsystem.

In consideration of a fact that production of the calcined bauxite cannot be sintered well and its organization structure have nonuniform characteristic due to mullitilization of about 10% volume expansion ratio at high temperatures, therefore, after regulating chemical composition (Fe₂O₃ + Al₂O₃)/SiO₂(Fe₂O₃≤10%)) of the bauxite with mid-low grade to about 2.57 (mass ratio) and then cogrinding, mullite can be prepared by sintering method at 1600 °C under air condition. Equilibrium liquid point of materials located within 3Al₂O₃•2SiO₂-SiO₂-Al₂O₃•TiO₂ subsystem is the point L₁ at 1600 °C in air, and its equilibrium phases are 3Al₂O₃•2SiO₂ and SiO₂ or 3Al₂O₃•2SiO₂ and Al₂O₃•TiO₂. Chemical composition of the bauxite with mid-low grade should be located within I region in

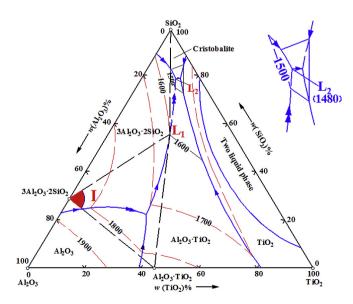


Fig. 2. Phase diagram of Al₂O₃-SiO₂-TiO₂ ternary system [29].

Download English Version:

https://daneshyari.com/en/article/5447675

Download Persian Version:

https://daneshyari.com/article/5447675

Daneshyari.com