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a b s t r a c t

A computationally-efficient 3D phase-field model for simulating grain growth in through silicon vias
(TSVs) is presented. The model is capable of simulating grain growth in the cylindrical shape of a TSV.
The results generated from the phase-field simulations are used in a finite element model with anisotrop-
ic elastic and isotropic plastic effects to investigate the large statistical distribution of Cu pumping (i.e.
the irreversible thermal expansion of TSV) experimentally seen. The model thus allows to correlate the
macroscopic plastic deformation with the grain size and grain orientations.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Through silicon vias (TSVs) are a key part of 3D System in
Package (SIP) devices, enabling the vertical interconnection of
stacked dies. Most often they are filled with electro-plated Cu
in polycrystalline form. Due to the large difference in coefficient
of thermal expansion with Si, the exposure to high temperatures
during subsequent processing steps causes irreversible (plastic)
extrusion of the Cu, referred to as ‘Cu pumping’. This results in
a relatively high tensile stress inside the Cu at room temperature.
The distribution of both Cu pumping and Cu stress values shows a
large spread over TSVs of a single wafer [1–4]. For Cu pumping
this spread is clearly correlated to variations in the Cu
microstructure [5]. As potential reliability issues related to Cu
pumping or Cu stress will first occur at the TSVs with the highest
values for either, any model aiming to predict this behavior
should include a statistical spread in addition to a median value.
Therefore, variations in the Cu microstructure between TSVs and
during exposure to the high BEOL processing temperatures (grain
evolution [4,6]) must be taken into account.

Finite Element Models (FEM) for the study of reliability and
failure mechanisms in TSVs encountered in literature assume homo-
geneous isotropic Cu properties [7–9]. We are developing a finite
element model for the thermo-mechanical behavior of Cu TSVs
incorporating Cu microstructure, in order to capture the resulting
variations and build further understanding of the role of Cu
microstructure. This paper presents a computationally-efficient
model for simulating grain growth inside the TSV using the
phase-field method.

Phase-field modeling is widely used to simulate grain-growth in
heterogeneous materials on a mesoscale. This method allows to
simulate the evolution of the polycrystalline structure in a Cu
TSV and when coupled with a finite element model enables to
include anisotropic properties as a function of grain orientation
in the elasticity and plasticity models. In the phase-field method,
different order parameters are assigned to the different grain ori-
entations and grain boundaries are described as diffuse transitions
in the values of these order parameters. Moreover, differential
equations are derived from kinetic and thermodynamic principles,
based on the assumption that a reduction in bulk energy, interfa-
cial energy or elastic energy, is the driving force for grain evolution
[10,11]. An important advantage of the phase-field method is that,
thanks to the diffuse-interface description, there is no need to track
the grain boundaries during microstructure evolution and
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therefore it is mathematically feasible to simulate the evolution of
complex grain shapes and connected grain structures in 3D [10,11].

In this work a semi-implicit Fourier-spectral method is used to
solve the differential equations. The implementation was adapted
to treat the cylindrical shape of the TSVs. The time steps in the
simulations are related to a physical time and temperature through
the thermodynamic and kinetic properties of the material. The
resulting grain structures were used in a finite element code,
where the effect of anisotropic elasticity in the different grains in
a TSV were analyzed as a function of the grain size.

The next section describes the theoretical background of the
phase-field method with a focus on grain growth models. In the
third section, we describe the modification made to the standard
phase-field grain growth model in this work and show how it
can be combined with a FEM to simulate grain growth and Cu
pumping in a cylindrical TSV.

2. Phase-field method

The phase-field method provides a way to model the evolution
of the grain structure and enables us to analyze the effect of aniso-
tropy on microstructure evolution in materials. The phase-field
method is widely used in various applications such as solidifica-
tion, multiphase systems and electromagnetism. In this section, a
standard model for grain growth in single phase materials is
described. Readers are referred to [10,11] for a broader overview
of the phase-field method for modeling microstructural evolution.

In polycrystalline materials, grains may continuously grow or
shrink in time, under influence of an external load, such as pres-
sure, or temperature.

According to Eq. (1) [9], the total free energy of a system, F, may
consist of several contributions, namely the bulk chemical energy
Fbulk (which defines the composition of equilibrium phases), inter-
facial energy Fint and elastic energy Fel (both affect the equilibrium
phase and define the shape of grain boundaries):

F ¼ Fbulk þ Fint þ Fel ð1Þ

In the grain growth model for single-phase materials, only the
interfacial energy is considered.

In a phase-field model, interfaces are assumed to be diffuse, i.e.
a narrow region with finite width over which the properties
change continuously. By contrast, for sharp interfaces (used in
other grain-growth methods such as Monte Carlo simulation),
property changes are instant and sharp (Fig. 1). In phase-field

models for grain growth, grains with different crystal orientations
are represented using order parameters, gi(r, t). These are
continuous functions of space r and time t. Within each grain only
one of the order parameters, the one representing the crystal orien-
tation of that grain equals 1 and the others are zero; across the
grain boundaries, the values of the order parameters gradually
change between 0 and 1 [12].

The free energy is a function of all order parameters represent-
ing the different grain orientations and their gradients. It has the
following form [9]:
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ty as a function of the set of order parameters (gi), is defined as in
Eq. (3) [13]:
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It has degenerate minima at (g1, . . . , gi, . . .) = (1, 0, . . . , 0),
(0, 1, 0, . . .), . . . , (0, . . . , 1, . . . ,0), corresponding to the different
crystal orientations of the grains.

Time-dependent Ginzburg–Landau equations are solved to
determine the time evolution of the order parameters (i.e. the grain
structure in the considered case of grain growth) [12,13]:
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Eq. (5) is calculated for every orientation in the phase-field system,
which can be computationally intensive when we deal with a large
number of order parameters.

For the numerical solution, differential Eq. (5) can be
transformed into algebraic Eq. (6) in Fourier space. The method
requires a uniform 2D or 3D equally spaced grid and periodic
boundary conditions.
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In this equation ~gn
r;s are the Fourier transforms of the order para-

meters at time step n and grid point (r, s). Dx is the distance
between neighboring grid points, Dt is the time between the
evaluated time steps and j and L as mentioned earlier are material
constants and impact the interface energy and thickness
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) [12,14]. After solving (6), an inverse Fourier

transform is taken from the ~gnþ1
r;s to obtain gnþ1

s�1 in real space. It is
important to choose an optimal grid spacing (Dx), between grid
points, namely fine enough to resolve the diffuse interface profile,
and large enough to limit the computation time and memory usage.
This semi-implicit Fourier-spectral method enables use of a larger
time step, as compared to a standard finite difference discretization.
The periodic boundary conditions may limit the applicability of the
method.

Fig. 1. Sharp interface (top) and diffuse interface (bottom) representation, for
defining grain boundaries.
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