Accepted Manuscript

Effect of graphene oxide nanosheets and ultrasonic eletrodeposition technique on Ni–Mo/graphene oxide composite coatings

MATERIALS
CHEMISTRY AND
PHYSICS
PHYSICS
PARTICULAR COMMUNICATIONS

Jibo Jiang, Chenqi Feng, Wei Qian, Liying Zhu, Sheng Han, Hualin Lin

PII: S0254-0584(17)30519-9

DOI: 10.1016/j.matchemphys.2017.07.010

Reference: MAC 19817

To appear in: Materials Chemistry and Physics

Received Date: 21 December 2016

Revised Date: 16 May 2017

Accepted Date: 02 July 2017

Please cite this article as: Jibo Jiang, Chenqi Feng, Wei Qian, Liying Zhu, Sheng Han, Hualin Lin, Effect of graphene oxide nanosheets and ultrasonic eletrodeposition technique on Ni–Mo/graphene oxide composite coatings, *Materials Chemistry and Physics* (2017), doi: 10.1016/j.matchemphys. 2017.07.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of graphene oxide nanosheets and ultrasonic

eletrodeposition technique on Ni-Mo/graphene oxide

composite coatings

Jibo Jiang^{1*}, Chenqi Feng¹, Wei Qian, Liying Zhu, Sheng Han, Hualin Lin

School of Chemical and Environmental Engineering, Shanghai Institute of

Technology, Haiquan Road 100, 201418, Shanghai, P. R. China.

(*Corresponding author. E-mail address: jibojiang0506@163.com (J.-B. J.) Tel.: +86 21

60877228; fax: +86 21 60873560);

¹These two authors contributed equally to this work.

Abstract:

Nano Ni-Mo/graphene oxide (GO) sheet composites were successfully prepared by

direct current electrodeposition with ultrasonic (WS) vibration on low-carbon steel.

The composite coatings's roughness, microhardness, corrosion and oxidation

resistance, which were influenced by GO and ultrasonic factors, were investigated.

Results from scanning electron microscopy (SEM), Raman spectroscopy and X-ray

photoelectron spectroscopy (XPS) showed reduced graphene oxide (rGO) distributed

in the coatings. X-ray diffraction patterns indicated that a decreased grain size of the

nanocrystalline composite coatings after ultrasonic modification. In addition, results

from thermogravimetric analysis from 25 °C to 600 °C showed that incorporating GO

enhanced oxidation resistance. Best corrosion resistance value of 3.62 K Ω cm² and

7.4 µA cm⁻² of the ultrasonicated coatings (Ni–Mo/GO) were detected compared with

coatings (Ni–Mo/GO) without sonic treatment or Ni–Mo coating.

Keywords: Ni-Mo/Graphene oxide, Ultrasonic, Low-carbon steel

1. Introduction

1

Download English Version:

https://daneshyari.com/en/article/5447917

Download Persian Version:

https://daneshyari.com/article/5447917

<u>Daneshyari.com</u>