Accepted Manuscript

Epitaxial Growth of Tantalum Carbides by Low Carbon Flow Carburizing

Dominique Cotton, Philippe Jacquet, Sébastien Faure, Vincent Vignal

PII: S0254-0584(16)30975-0

DOI: 10.1016/j.matchemphys.2016.12.063

Reference: MAC 19394

To appear in: Materials Chemistry and Physics

Received Date: 09 December 2015

Revised Date: 18 December 2016

Accepted Date: 28 December 2016

Please cite this article as: Dominique Cotton, Philippe Jacquet, Sébastien Faure, Vincent Vignal, Epitaxial Growth of Tantalum Carbides by Low Carbon Flow Carburizing, *Materials Chemistry and Physics* (2016), doi: 10.1016/j.matchemphys.2016.12.063

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Highlights:

With a special carburizing treatment, several microstructures appear on the same tantalum sample, with the variation of carbon flux.

Epitaxial relationships between Ta, Ta₂C and TaC are highlighted in tantalum carbide layers.

Under specifics carbon flux, TaC carbide layer grow in relation with the Ta substrate.

Columnar and equiaxed growths of carbide layers are separated by a carbon boundary flux

Download English Version:

https://daneshyari.com/en/article/5448225

Download Persian Version:

https://daneshyari.com/article/5448225

<u>Daneshyari.com</u>