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HIGHLIGHTS

e Only bond number is required in the established model of Eq. (10).

o The success of Eq. (10) is found for both Si and II-VI compound nanoparticles.

e Eq. (10) can be expected for any other nanostructures in full size range.
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Taken bond number as the only parameter, an unified model for the size-dependent band gap Eg4(D) of
semiconductor nanoparticles is established in this work, with D being the particle size. As expected, the
band gap increases with size dropping, and the success of the model is confirmed not only by the results
of single elemental Si nanoparticles but also by the II-VI semiconductor compounds nanoparticles even
in full size range. Based on the bond number of cubooctahedron which is used to describe the shape of

the nanoparticles in this work, a good agreement between the model predictions and experimental, first-
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is known.

principle calculation results is obtained. Since there is no other adjustable parameter, the established
model presents a possible way to predict the band gap of other nanostructure as long as its bond number

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Up to now, there still have a lot of attractive attention for the
semiconductor nanomaterials to researchers due to their special
properties [1—3]. It has been widely accepted that they have great
potential application in many fields, such as for solar cells [4], novel
ultra small electronic logic and memory devices in the electronic
industry [5,6], and even for a single-atom transistor [7]. Since the
higher surface/volume ratio, many kinds of optical or electrical
properties of nanomaterials are different from that of the bulk
counterpart. One of the important things is that the band gap Eg has
been found to have great relationship with size [8—12], and usually
there is a larger value for nanostructures if compared with bulk
materials. This greatly enhances the application of semiconductor
nanomaterials owing to the widened band gap. For example, many
different types of Si photon nanodevices are have been widely
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produced and used, while the bulk silicon is limited in the appli-
cation due to its indirect and small band gap feature [10—12].
Moreover, in order to satisfy the requirement for the high effect
transistors in the graphene-based electronic devices, the band gap
opening in graphene has been successfully realized by controlling
the size of graphene [13,14]. Thus, it becomes necessary for quan-
titatively determining the size-related band gap of the semi-
conductor nanostructures, which will be the good guidance for
their applications in industry.

The fact of the size-related band gap has been greatly supported
by many researches, including experimental measurements
[15—29], first principle calculations [30—35]| and theoretical
deduction [1,9,36—40], etc. Through the band energy level analysis,
one can get the value of band gap by means of X-ray photoemission
spectroscopy [15,19], or by X-ray absorption spectroscopy
[16—18,20,22], and or by photoluminescence [24,28]. Density
Function Theory (DFT) calculation is another valid and popular
method to obtain the band gap of semiconductor nanostructures.
Especially for the small clusters including several hundreds or de-
cades atoms, the detail about the size-related band gap is clearly
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obtained [31—35]. We should note that the theoretical prediction
for band gap of semiconductor nanostructures still has its own
merit. This is because the theoretical model of band gap could in
advance give a valuable guidance for the application or design of
semiconductor nanostructures. According to the quantum
confinement theory, Buhro et al. [36] built a inverse proportional
relationship between band gap Eg and size D (that is AEg(D) o D‘)‘)
as a first-order approximation, where A is the index and could be 1
or 2, and 'A’ means the difference between Eg(D) and bulk band gap
Eg(c0). The reasonable estimation of Buhro's model is evident
mainly for the larger size, while the inevitable divergence will exist
when the size of nanostructure becomes more and more smaller.
Since the energy is a basic property for materials, the thermody-
namic analysis for the size-dependent band gap is another useful
way to estimate band gap [1,37]. With the supporting of melting
point model, Jiang et al. [40] get the good prediction for band gap.
And Sun et al. also work the band gap out well based on the bond
order-length-strength (BOLS) theory [38,39]. All the evidences
suggested that the band gap Eg of nanostructures has a larger value,
and will increases with size dropping.

Even though some theoretical models have been established, an
unified model for size-dependent band gap Eg(D) which has the
ability to predict the band gap in full size range, is still lack. How-
ever, it maybe the possible way if we introduce the parameter of
bond number. This is because one hand the bond number could be
calculated well for a certain nanostructure without any limitation
on the size. On the other hand, we have successfully applied the
bond number into the melting model which is directly related with
cohesive energy [41]. What's more important, the fact of the close
relationship between band gap and cohesive energy implies that
one could use the bond number as one of the parameters presented
in the band gap model. Thus, based on the inherent relation with
cohesive energy, an unified model for the size-dependent band gap
Eg(D) of semiconductor nanoparticles is constructed in this work.
The comparison of model predictions with experimental and first
principle calculation results is made. Their good agreement con-
firms the validity of the established model even in full size range.
And also the established model shows it can be applied simulta-
neously for the single crystal nanoparticles and compound ones.

2. Model

In light of the nearly-free-electron theory, we can get the bulk
band gap Eg() based on the first Fourier coefficient, which can be
expressed as Eg(o0) = 2|V(o0)| for simplicity [40], where V(c0) means
the first Fourier coefficient of crystalline field. If using this relation
into the nanoscale, there is AEg(D)/Eg(c0) = |AV(D)/V(c0)|, where
AEg(D) = Eg(D) - Eg(o0) and AV(D) = V(D) — V(e0), and Eg(D) and V(D)
separately denote the band gap and the Fourier coefficient of
crystalline filed in nanoscale. It should be noted that V(o) and the
bulk cohesive energy E{(c) have the similar means because both of
them are greatly controlled by both of the atom number and the
interaction energy between atoms in a system. Thus, an approxi-
mate relation, i.e., Efco) o« V(oo) is put forward and then
E(D) o V(D) could also be seen. Then, with these relations, Eg(D)
could have the following expression,

Ec(D) — Ec(o0)
Ec(o0)

Ec(D)
Ec(co)

Eg(D) _
Eg(oo)

|AV(D)

T Vieo)

(1)

1+

-+

Eq. (1) presents a possible way to obtain Eg(D) value if the size-
dependent cohesive energy EJ(D) is resolved, since the corre-
sponding bulk values of both Eg(c0) and E¢(0) are usually constants.
Just because there exists a direct relationship between cohesive
energy and bond number, the construction of a new relationship

between band gap and bond number becomes feasible. As ex-
pected, there is E{c0) = gj(c0) x By where ¢j(0) and B; denote the
single bond energy and the bond number of bulk materials,
respectively [42]. Then a similar expression, i.e., E((D) = &j(D) x B,
can be read with (D) meaning the average single bond energy and
B, the bond number in a nanostructure. So, one can obtain the
model of E((D)/E(c0) = [&i(D) x Ba]/[ei(c0) x Bt], through which the
size-dependent cohesive energy could be resolved. If &i(D) = &j(c0)
is taken for approximation, E.(D) can be determine by the following
expression,

Ec(D)/Ec(o0) = Ba/Bt (2)

In Eq. (2), it is clear E((D) can be determined directly by bond
number, however, the bond relaxation is ignored in full size range.
This is not always reasonable because the bond deficit on surface
becomes more and more important when the size decreases to
nanoscale [41]. This inevitably leads to the bond relaxation with the
evidence of &i(D) +# &j( o). To further modify the model of Eq. (2), the
bond relaxation is taken into consideration. Through introducing
the surface energy y which arises from the bond deficit on the
surface, and considering its role on the E(D) by using surface/vol-
ume ratio 9, E(D) could be written,

Ec(D) = 8(Ec(e0) + ) + (1 = 3)Ec(c0) 3)

In Eq. (3), the determination on y has been given in Ref. [43],
that is, y/E(c0) = —[1 — (Zs/Zp)'/?], where Z; is the mean coordi-
nation number of the surface atoms and Z;, is the coordination
number of bulk interior atoms. In terms of the two boundary
conditions, one is a system with all atoms standing on the surface
(i.e. having & — 1) and another is bulk system with 8 — 0 respec-
tively, and by inserting this expression for y into Eq. (3) yields two
limits cases for E(D)/E(c). Then there are,

Ec(D)/Ec(c0)=(Zs/Z)'/*  (3—1) (4.1)

Ec(D)/Ec(e0) =1~ [1- (Zsp/2,)"*]3  (3-0) (42)
where Zg, means the surface coordination number of bulk system.
Letting N, Nj and N be the number of surface atoms, inner atoms
and total atom number, respectively, the common relationship is
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Fig. 1. The model predictions of Eg(D) for Si nanoparticles by Eq. (10) denoted as the
solid line, and D is determined by n = (D/hg — 1)/2 with hg = 0.235 nm [45] for Si
crystal. The symbols are the relevant experimental [10,11] and first-principle calcula-
tion [12] results of band gap of Si nanoparticles.
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