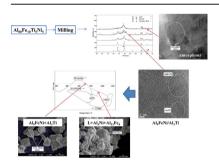
ELSEVIER

Contents lists available at ScienceDirect

Materials Chemistry and Physics

journal homepage: www.elsevier.com/locate/matchemphys

Fabrication and thermal characterization of amorphous and nanocrystalline Al₉FeNi/Al₃Ti compound


Majid Tavoosi

Department of Materials Engineering, Malek-Ashtar University of Technology (MUT), Shahin-Shahr, Isfahan, Iran

HIGHLIGHTS

- We study the effect of milling process on Al₈₀Fe₁₀Ti₅Ni₅ alloy.
- We study the effect of annealing on Al₈₀Fe₁₀Ti₅Ni₅ supersaturated solid solution phase.
- We study the effect of annealing on Al₈₀Fe₁₀Ti₅Ni₅ amorphous phase.
- We study the thermal behaviour of Al₉FeNi/Al₃Ti compound.

GRAPHICAL ABSTRACT

ARTICLE INFO

Article history:
Received 12 March 2016
Received in revised form
1 October 2016
Accepted 16 October 2016
Available online 17 October 2016

Keywords: Intermetallic compound Powder metallurgy Annealing Nanostructures

ABSTRACT

In this study, the fabrication and structural characterization of amorphous/nanocrystalline Al_9FeNi/Al_3Ti phase has been performed. In this regards, milling and annealing processes were applied on $Al_{80}Fe_{10}$ - Ti_5Ni_5 (at. %) powder mixture for different periods of time. The prepared samples were characterized using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM) and differential scanning calorimetery (DSC). According to the results, supersaturated solid solution, nanocrystalline Al_9FeNi/Al_3Ti (with average crystallite size of about 7 nm) and amorphous phases indicated three different microstructures which can be formed in $Al_8OFe_{10}Ti_5Ni_5$ system during milling process. The formed supersaturated solid solution and amorphous phases were unstable and transformed to Al_9FeNi/Al_3Ti intermetallic compound during annealing process. It is shown that, Al_9FeNi phase in Al_9FeNi/Al_3Ti intermetallic compound can decompose into Al_3Ni , $Al_{13}Fe_4$ and liquid phases during a reversible peritectic reaction at 809 °C.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Alloys and intermetallic components with aluminum content of 80–90 at. %, have attracted considerable attention due to their combination of low density, high strength and corrosion resistance. A new class of these alloys and components, which has received a great deal of attention in recent years is amorphous and

nanocrystalline materials [1–4]. Indeed, this new grade of materials exhibited several superior properties that cannot be obtained in common crystalline materials [4–6]. The glass forming ability of Albased alloys is low and there is not any report about the formation of bulk amorphous and nanocrystalline structure for this system by direct solidification methods. Nevertheless, a great number of amorphous and nanocrystalline Al-base alloys have been synthesized by various preparation methods of rapid quenching from liquid or vapor and solid-state processes [1].

The mechanical alloying (MA) process is convenient solid state

E-mail address: ma.tavoosi@gmail.com.

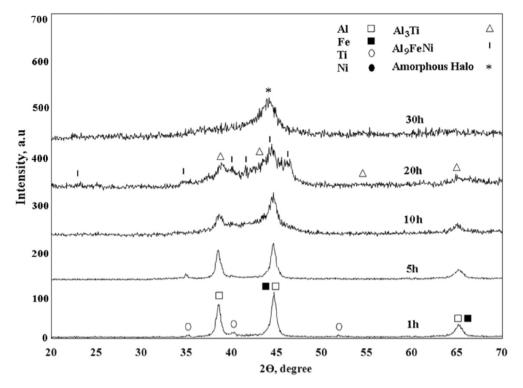
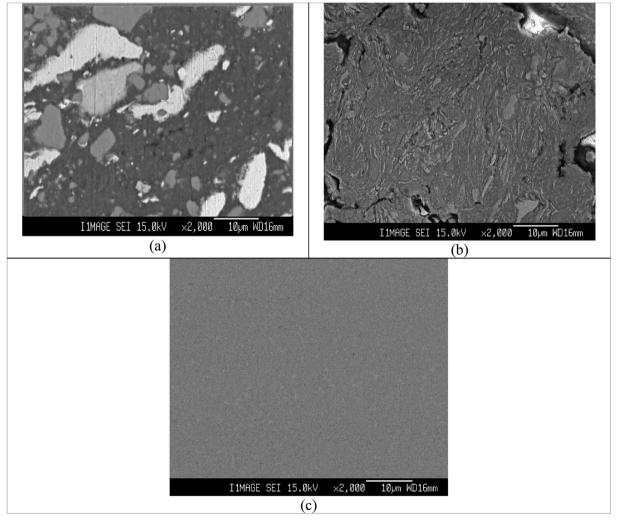



Fig. 1. XRD patterns of $Al_{80}Fe_{10}Ti_5Ni_5$ powder mixture after various milling periods.

 $\textbf{Fig. 2.} \ \ \text{Cross sectional SEM micrographs of } Al_{80}Fe_{10}Ti_5Ni_5 \ powder \ mixture \ after \ a) \ 1, \ b) \ 5 \ and \ c) \ 10 \ h \ of \ milling \ periods.$

Download English Version:

https://daneshyari.com/en/article/5448464

Download Persian Version:

https://daneshyari.com/article/5448464

<u>Daneshyari.com</u>