FISEVIER

Contents lists available at ScienceDirect

Materials Chemistry and Physics

journal homepage: www.elsevier.com/locate/matchemphys

A novel Ni²⁺-doped Ag₃PO₄ photocatalyst with high photocatalytic activity and enhancement mechanism

Limin Song ^{a, **}, Zewen Chen ^a, Tongtong Li ^{a, 1}, Shujuan Zhang ^{b, *}

- ^a College of Environment and Chemical Engineering, State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, PR China
- ^b College of Science, Tianjin University of Science & Technology, Tianjin, 300457, PR China

HIGHLIGHTS

- Ni²⁺-modified with higher photodegradation ability was synthesized.
- OH radicals were the main active species in the oxidation of MO.
- The doping of Ni²⁺ in Ag₃PO₄ is responsible for the enhanced activity.

ARTICLE INFO

Article history: Received 20 March 2016 Received in revised form 23 September 2016 Accepted 30 October 2016 Available online 1 November 2016

Keywords: Inorganic compounds Chemical synthesis Optical properties

ABSTRACT

 Ni^{2+} -doped Ag_3PO_4 (Ni^{2+} - Ag_3PO_4) photocatalysts with superhigh activity for photodegradation of organic pollutants were prepared by a simple hydrothermal method. The photocatalysts were characterized with X-ray powder diffractometry, transmission electron microscopy, ultraviolet—visible absorption spectroscopy, X-ray photoelectron spectroscopy, measurement of total organic carbon, and electron paramagnetic resonance spectrometry. The photocatalysts were evaluated by methyl orange (MO) photodegradation experiments under visible light irradiation ($\lambda > 420$ nm). Comparative analysis showed the optimal doping dosage was 0.05 mol/L Ni^{2+} . The optimal Ni^{2+} - Ni^{2+} has an MO photodegradation rate constant four times larger than pure Ni^{2+} . The photocatalytic ratio of 40 mg/L MO over the optimal Ni^{2+} - Ni^{2+} after 10 min is 89%, which indicates excellent photocatalytic ability in high-concentration MO solutions. The Ni^{2+} doping into Ni^{2+} can increase the level of band gap, and accelerate the utilization of photons and the separation of photocatalytic ability.

 $\ensuremath{\text{@}}$ 2016 Elsevier B.V. All rights reserved.

1. Introduction

Photocatalytic technology is an effective way to solve environmental pollution because of low cost, no secondary pollution, simple process, and energy saving [1,2]. Before the popularization of this technology, however, one major challenge is to develop new efficient and stable photocatalysts [3]. One such candidate is silver phosphate (Ag₃PO₄), which is a yellow cubic crystal solid powder. Ag₃PO₄ has a direct bandgap of 2.43 eV and an indirect band gap of

E-mail addresses: songlmnk@sohu.com (L. Song), zhangshujuan@tust.edu.cn (S. Zhang).

1 Co-first author

2.36 eV. Ag_3PO_4 can absorb ultraviolet—visible (UV—vis) light at wavelength (λ) less than 525 nm [4] and has strong photocatalytic ability under visible light irradiation. The photocatalytic oxidation experiment of Ag_3PO_4 was first reported in 2010 [5,6]. Ag_3PO_4 not only produces O_2 through water photolysis, but also degrades organic dyes under visible radiation, with quantum efficiency above 90%. These results prove that Ag_3PO_4 is a high-efficiency photocatalyst with great application potential [7–10]. So far, much work has been done to improve the photocatalytic ability of Ag_3PO_4 through modification.

Modification based on metal or non-metallic ions is an effective way to enhance the degradation ability of photocatalysts [11–16]. During cation doping, an impurity band formed in the band gap of materials can reduce the band gap and enhance the efficiency of low-energy high-wavelength visible light utilization [17,18]. Meanwhile, metal cations can act as an electron acceptor to capture

^{*} Corresponding author.

^{**} Corresponding author.

photo-generated electrons, thereby greatly facilitating the formation of reactive species (e.g. hydroxyl radical) on the catalyst surfaces [19,20]. In addition, the recombination between photogenerated electrons and holes can be effectively prevented, thereby improving the photocatalytic properties.

In this study, we aimed to enhance the photocatalytic ability of Ag₃PO₄ by Ni²⁺ doping. There are reports about the modification of photocatalysts by using Ni²⁺, such as $K_2Ni(VO_3)_4$ [21], Ni-InVO₄ [22], Ni-TiO₂ [23] and Ni-CdS [24]. Ni 3d orbits can form impurity energy band in a semiconductor. The empty Ni 3d orbits in impurity energy band help to migrate photo-generated electrons and separate photo-generated electron-hole pairs, thus greatly improving the photocatalytic oxidation. For example, the Ni²⁺ doing in K₂Ni(VO₃)₄ can reduce the band gap energy. Thus, the photogenerated electrons can be easily produced under visible light and migrate from O 2p to the empty Ni 3d. The electron separation could significantly improve the oxidation ability of photocatalysts [21]. In addition, the Ni^{2+} doping, such as Ni^{2+} -CdS, can improve the stability and service life. These studies help to investigate the Ni²⁺-doped Ag₃PO₄ catalysts (Ni²⁺-Ag₃PO₄). We explored in detail how the physiochemical properties of Ni²⁺-Ag₃PO₄ impact the photocatalytic oxidation of methyl orange (MO), and analyzed the mechanism of oxidation ability enhancement. This study underlies the development of new efficient Ag₃PO₄ photocatalysts.

2. Experimental

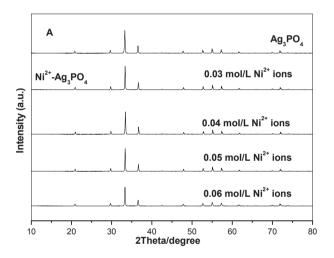
2.1. Synthesis of samples

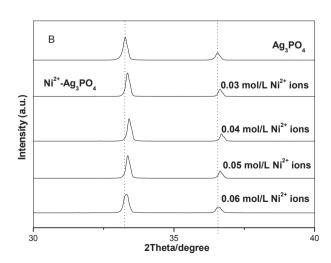
Ag₃PO₄ was prepared by a coprecipitation method. Specifically, appropriate amounts of AgNO₃ and NaH₂PO₄· 2H₂O were dissolved in 50 mL of deionized water to form a yellow precipitate. The precipitate was collected, washed and dried to form pure Ag₃PO₄. Ni²⁺-Ag₃PO₄ was synthesized by a hydrothermal method. Specifically, appropriate amounts of Ag₃PO₄ and Ni(NO₃)₂·6H₂O were added to 50 mL of deionized water under stirring. The mixed solution was transferred to a 100 mL stainless steel autoclave and allowed to react at 60 °C for 2 h. After the autoclave was cooled to room temperature, the products were collected, washed with anhydrous ethanol and deionized water several times, and dried in a vacuum oven at 80 °C for 6 h.

2.2. Characterization of samples

Crystal phases and sizes were measured by a Rigaku D/max 2500 powder X-ray diffractometer (XRD, CuK α , $\lambda = 1.5406$ Å, 40 kV, 40 mA). Optical performance and band gaps were measured by an HP8453 UV-vis spectrometer using BaSO₄ as the reference. Morphology and particle size were visualized by a IEM 2100 transmission electron microscope (TEM, JEOL, Japan; 200 kV) and a scanning electron microscope (ZEISS Gemin SEM 500). Specific surface areas of Brunauer-Emmett-Teller (BET) were determined on a Micromeritics ASAP 2020M apparatus at the liquid nitrogen temperature of -196 °C. Surface bond energy was measured by a Perkin-Elmer PHI5300 X-ray photoelectron spectroscope (XPS). Carbon (C_{1s}, 284.6 eV) was used to calibrate bond energy. Total organic carbon contents (TOCs) in the remaining solutions were measured by a Shimadzu-Toc-Vcph meter. Zeta potential at room temperature was measured with a Zetasizer nanoscale ZS90 instrument. Electron spin resonance (ESR) spectra were recorded by a JES FA200 electron paramagnetic resonance spectrometer.

2.3. Activity measurement


MO photodegradation experiments were conducted by adding


100 mg of a photocatalyst into 100 mL of 10–40 mg/L MO solutions. The home-made reactor was vertically irradiated by a 300 W xenon lamp ($\lambda > 420\,$ nm). Before exposure to light irradiation, each mixture solution was stirred in dark for 30 min to reach adsorption equilibrium. Then, 3 mL from each solution was taken out every 2 min and centrifuged for UV–vis absorption measurements.

3. Results and discussion

3.1. Characterization of photocatalysts

The XRD spectra of Ag_3PO_4 and Ni^{2+} - Ag_3PO_4 are presented in Fig. 1A. The XRD peak of Ag_3PO_4 reveals a pure crystalline and cubic phase (JCPDS 06-0505, space group: $P\overline{4}3n[218]$, a=b=c=6.013 Å). Similarly, the peaks of Ni^{2+} - Ag_3PO_4 all confirm the formation of a cubic crystalline phase. No other components including $Ni_3(PO_4)_2$ are found in Fig. 1A. To further investigate the doping of Ni^{2+} - Ag_3PO_4 , we enlarged the XRD patterns of Ag_3PO_4 and Ni^{2+} - Ag_3PO_4 (Fig. 1B). Clearly, the main peaks of Ni^{2+} - Ag_3PO_4 shift to right, which indicates the addition of Ni^{2+} causes the lattice contraction of Ag_3PO_4 . The reason is that Ni^{2+} has a smaller radius than Ag^+ and enters the crystal lattice of Ag_3PO_4 to substitute Ag^+ , leading to the

Fig. 1. (A) X-ray diffraction patterns of undoped and $\rm Ni^{2+}$ -doped Ag₃PO₄. (B) Partially enlarged XRD patterns of undoped and $\rm Ni^{2+}$ -doped Ag₃PO₄.

Download English Version:

https://daneshyari.com/en/article/5448490

Download Persian Version:

https://daneshyari.com/article/5448490

Daneshyari.com