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and duration for MOx polycondensation and film densification. This article reviews recent advances in
solution-based MOx dielectric materials, with a specific focus on the extensive categorization of their
structures/compositions and on advanced approaches for realizing ultimate material properties and
next-generation device platforms. We expect that this review will manifest the strong potentials of sol-
gel MOx dielectric materials toward all-solution-processed low-voltage transparent electronics with
freedom in mechanical form factors along with unrivaled performance.
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1. Introduction

The progress toward practical applications of large-area flexible
electronics such as information displays [1], wearable [2,3] and
ultra-light [4] devices, and low-cost disposable circuits, [5,6]
requires the development of high-performance electronic materi-
als whose properties are well suited to each target application. Of
equal importance are the corresponding film fabrication methods,
and a variety of state-of-the-art printing techniques [7-9] such as
inkjet [10,11], screening [12,13], gravure [14,15], and bar coating
methods [16,17] have shown great promise for cost-effective film
deposition on large-scale substrates. In this technological context,
solution-processable high-performance electronic materials are at
the forefront of materials science and have been extensively
researched for use in a versatile device building block, i.e., thin-film
transistor (TFT). Among major components in a TFT, a gate
dielectric plays an important role because it manipulates the
conductance of the semiconducting channel by accumulating
charge carriers while its electrical insulation to minimize a leakage
current is another critical requirement for minimal static dissipa-
tion. Nonetheless, a strong emphasis on high-performance
semiconducting materials [18-26] has been major driving force
within the TFT community; hence, it is now increasingly important
to discover how to exploit dielectric material properties to realize
the well-balanced ultimate TFT performance.

Two most critical metrics of desirable dielectrics are high areal
capacitance and ideal electrical insulation, which can be essen-
tially achieved by adopting a very thin layer of robust material with
a high dielectric constant (k). However, most conventional
methods for creating solid-state high-k inorganic dielectrics rely
on vacuum-based deposition techniques (e.g., magnetron sputter-
ing, chemical vapor deposition, atomic layer deposition, and etc.).
These methods typically require the long process time not only for
film deposition but also high-vacuum stabilization, and/or the
post-deposition treatment at relatively high temperatures for film
densification; thus, they have limited applicability for futuristic
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large-area flexible mass-production-oriented electronics on plastic
substrates. Despite solution processability, polymer-based dielec-
trics typically exhibit relatively low dielectric constant and may
suffer from substantial leakage current, particularly, at relatively
low film thickness without dense cross-linking. Furthermore,
typical polymeric insulators are not compatible with chemical
treatments due to dissolution in harsh solvents or etching against
reactive gases, and/or high-temperature annealing due to the low
glass-transition temperatures; because of these facts, complicated
additional steps are often called for to achieve all-solution-
processed high-performance organic electronics.

Since the first report on metal oxide (MOX) film formation in
1962 [27], solution-processed MOx dielectric materials have been
widely studied due to their high-k values [20,23,24,28], excellent
optical transparency [29-31], and chemical/environmental stabil-
ity [32-43]. Until now, however, major challenges in solution-
based MOx have been associated with the post-deposition
treatment for film densification, which generally necessitates
high-temperature annealing (ca. 400°C) and/or hour-long proc-
essing time that are unsuitable for the industry-scale commercial-
ization. Consequently, recent research efforts have been directed to
reduce the temperature and time for post-deposition processes by
introducing various wet-chemical [32-37] and/or smart low-
temperature treatments [38-45]. However, the abovementioned
techniques have been primarily designed and employed almost
exclusively for MOx semiconductors, while their broader applica-
bility to MOx dielectric materials still remains unclear.

In this article, we present a comprehensive review of recent
progress in the development of sol-gel-processed MOx dielectric
films and their application to high-performance electronic devices,
in particular, TFTs. Special emphasis is placed on the classification
of diverse structural variations of sol-gel oxide dielectrics and the
recently-unveiled physicochemical mechanism on low-tempera-
ture oxide layer formation without electrical performance
compromised.
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Fig. 1. The basic mechanisms of dielectric polarization. Schematics of (a) electronic polarization, (b) ionic polarization, (c) orientation polarization. (d) The contribution of
electronic, ionic, and orientation polarization to the overall dielectric constant at the different frequency applied.
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