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Commercial indium tin oxide (ITO) has several drawbacks for optoelectronic applications such as high
cost due to indium scarcity and high temperature deposition process, mechanical brittleness, and the
complicated manufacturing process where lithographic patterning is needed. Its brittle nature can lead
to cracking when used in applications involving bending, such as touch screens and flexible displays.

Therefore, novel transparent conducting films (TCFs) based on nanomaterials with a similar or improved

_’;eyWOTde ducting fil optoelectronic performance and good mechanical flexibility are needed for next-generation stretchable
Grrznshl’;r:m conducting film and wearable devices. Carbon nanotubes, graphene and metallic nanowires have been explored as
Carl[))on nanotubes alternatives, and they show great promise for a wide variety of optoelectronic applications. In particular,
Nanowires graphene films have a higher transmittance over a wider wavelength range than single-walled carbon

Mechanical flexibility
Sheet resistance
Optical property

nanotube (SWNT) films. For equivalent sheet resistance, the graphene films exhibit optical
transmittance comparable to that of ITO in visible wavelength, but far superior transmittance in
infrared spectral region. This article provides the state-of-the-art reviews on the synthesis,

Hybrid optoelectronic properties, applications and challenges of these nanostructured materials for fabricating

TCFs.
© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Transparent conducting films (TCFs) represent a class of
materials having high electrical conductivity and excellent optical
transmission at visible wavelengths. Accordingly, TCFs have
found applications in a wide variety of optoelectronic and
photovoltaic devices including flat panel displays, touch panels
of phones and tablet computers, solar cells, organic light emission
diodes (OLEDs), antistatic and electromagnetic interference
shielding materials as well as heating elements for defrosting
window panels of aircrafts and vehicles. The prospects for the TCF
applications look promising due to rising demand for the displays,
touch panels and photovoltaics [1]. Till to present, vacuum
sputtered transparent conductive oxides (TCOs) such as indium
tin oxide (ITO), fluorine doped tin oxide (FTO) and aluminum-
doped zinc oxide (AZO) thin films are largely used as the
transparent electrodes for these devices. In particular, ITO with
high transparency and low sheet resistance is favored over other
TCOs [2-4]. However, ITO cannot keep pace with the current
development of optoelectronic devices in terms of economic and
technical considerations. Indium is a high-cost, precious metal
and the ever increasing consumption due to high demands will
exhaust its resources in the near future. The high-temperature
vacuum deposition of ITO is a relatively slow, expensive coating
process. Furthermore, ITO films of brittle nature limit their
application in flexible and portable electronic products. Recent
demands for mechanical flexibility of electronic devices and
uncertainties in the availability of indium motivated the search
for alternatives. Several materials like transparent conductive

polymers, carbonaceous nanomaterials and metal nanowires
have been developed for possible replacement of ITO.

In recent years, fast development in nanotechnology opens new
opportunities for synthesizing nanomaterials with unique chemi-
cal, mechanical and physical properties. Carbonaceous nanoma-
terials such as graphene and carbon nanotubes (CNTs) with
extremely high elastic modulus of ~1TPa, good mechanical
flexibility, high optical transmittance and electrical conductivity
are being considered as excellent candidates for transparent
conductive electrodes (TCEs) [5,6]. Graphene is a two-dimensional
(2D) building block material for carbon materials of all other
dimensionalities. It is a single atomic layer of sp? hybridized
carbon atoms packed densely in a honeycomb lattice, and can be
wrapped up into OD buckyball, rolled into 1D carbon nanotube, or
stacked into 3D graphite (Fig. 1) [7]. For practical applications,
graphene films are deposited on metallic substrates using chemical
vapor deposition (CVD) process. Those graphene/metal stacking
films must be transferred onto non-conducting substrates for
forming TCEs. The lowest sheet resistance of the currently
available CVD-graphene films is higher than that of ITO. However,
chemical doping can improve the conductivity of graphene
electrodes substantially. Single-walled carbon nanotubes (SWNTSs)
are highly resilient and can sustain a large strain of 40% with no
sign of brittleness [8]. Individual SWNT displays low electrical
resistivity of ~107¢ Q) cm [9,10]. However, bulk CNT network films
exhibit higher resistivity or lower conductivity than ITO due to the
presence of contact resistance amongst the nanotube junctions.

Apart from the carbonaceous nanomaterials, metallic nanos-
tructures such as metal nanowire networks and metal nanogrids
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