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a b s t r a c t

Solutions of the Helmholtz equation which describe electromagnetic beams (and also acoustic or particle beams)
are discussed. We show that an exact solution which reproduces the Gaussian beam waveform on the beam axis does
not exist. This is surprising, since the Gaussian beam is a solution of the paraxial equation, and thus supposedly
accurate on and near the beam axis. Likewise, a solution of the Helmholtz equation which exactly reproduces
the Gaussian beam in the focal plane does not exist. We show that the last statement also holds for Bessel–Gauss
beams. However, solutions of the Helmholtz equation (one of which is discussed in detail) can approximate the
Gaussian waveform within the central focal region.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Acoustic, electromagnetic and particle beams are described by solu-
tions of the Helmholtz equation
(

∇2 + 𝑘2
)

𝜓 = 0. (1)

Eq. (1) results respectively from the linearized hydrodynamic equations,
the Maxwell equations, and the Schrödinger equation. The wavenumber
𝑘 = 𝜔∕𝑐 (with 𝜔 the angular frequency and 𝑐 the speed of sound or the
speed of light), or is related to the energy per particle, which for the
particle mass 𝑀 is ℏ2𝑘2∕2𝑀 .

The widely used but approximate solution known as the Gaussian
beam ([1], Section 16.7, [2], Section 20.3) is

𝜓𝐺 (𝑥, 𝑦, 𝑧) = 𝑏
𝑏 + 𝑖𝑧

exp

{

𝑖𝑘𝑧 −
𝑘
(

𝑥2 + 𝑦2
)

2 (𝑏 + 𝑖𝑧)

}

(2)

𝜓𝐺 is the fundamental mode solution of the paraxial equation, obtained
by setting 𝜓 = 𝑒𝑖𝑘𝑧𝐺 in the Helmholtz equation and then neglecting the
term 𝜕2𝑧𝐺 in the resulting equation for 𝐺 (given below). This amounts
to assuming that the dominant 𝑧-dependence of the beam lies in the 𝑒𝑖𝑘𝑧
factor (when propagation is in the 𝑧 direction, as is assumed here). For
axially symmetric solutions we omit the azimuthal derivative, so the
Helmholtz equation in cylindrical coordinates, with 𝜌 =

√

𝑥2 + 𝑦2 the
distance from the beam axis, takes the form
(

𝜕2𝜌 + 𝜌
−1𝜕𝜌 + 𝜕2𝑧 + 𝑘

2
)

𝜓 = 0. (3)
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The substitution 𝜓 = 𝑒𝑖𝑘𝑧𝐺 gives an equation for 𝐺, namely (𝜕2𝜌 +𝜌
−1𝜕𝜌+

2𝑖𝑘𝜕𝑧 + 𝜕2𝑧 )𝐺 = 0, in paraxial form (𝜕2𝜌 + 𝜌−1𝜕𝜌 + 2𝑖𝑘𝜕𝑧)𝐺 ≈ 0. This
paraxial equation has as fundamental solution 𝐺 = 𝑏

𝑏+𝑖𝑧 exp
{

− 𝑘𝜌2

2(𝑏+𝑖𝑧)

}

,
thus giving us 𝜓𝐺 of Eq. (2). Higher modes may be obtained by differen-
tiation of 𝜓𝐺 with respect to 𝑥, 𝑦 or 𝑧, since the differential equations
are unchanged by translation in any coordinate. 𝜓𝐺 depends on the
wavenumber 𝑘 and on the length 𝑏, which gives the longitudinal extent
of the focal region. The transverse extent in the focal plane is given by
𝑤0 =

√

2𝑏∕𝑘. Thus the Gaussian fundamental mode is characterized by
a single dimensionless parameter 𝑘𝑏. It may seem plausible that when
𝑘𝑏 ≫ 1 (focal region large longitudinally compared to 𝑘−1) the Gaussian
beam would become a satisfactory solution of the Helmholtz equation,
everywhere. This is not so: when 𝜓𝐺 is substituted into 𝑘−2𝜓−1

𝐺 times
the Helmholtz equation, we obtain ([2], Section 20.3), instead of zero,

2
𝑘2(𝑏+𝑖𝑧)2

− 2𝜌2

𝑘(𝑏+𝑖𝑧)3
+ 𝜌4

4(𝑏+𝑖𝑧)4
. It follows that the errors become small in

regions where both of the following inequalities hold:

𝑘2
(

𝑏2 + 𝑧2
)

≫ 1 and 𝑏2 + 𝑧2 ≫ 𝜌2 (4)

Fig. 1 shows the modulus and phase of 𝜓𝐺, for 𝑘𝑏 = 2. Since the
exponent of the modulus of 𝜓𝐺 tends to −𝑘𝑏𝜌2∕2𝑧2 = − (𝑘𝑏∕2) tan2𝜃 far
from the origin, the half-angle of the cone of divergence of the Gaussian
beam, obtained by setting the exponent equal to −1, is 𝜃 = arctan

√

2∕𝑘𝑏.
The divergence angle defined in this way is 45◦ for 𝑘𝑏 = 2, and 30◦ for
𝑘𝑏 = 6.
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Fig. 1. 𝜓𝐺 (𝜌, 𝑧) in the focal region, plotted for 𝑘𝑏 = 2, for 𝑘 |𝑧| ≤ 10, 𝑘𝜌 ≤ 10. Shading
indicates modulus of the wavefunction (logarithmic scale, lighter colour indicates larger
modulus). The isophase surfaces are shown at intervals of 𝜋∕3. The phase is chosen to be
zero at the origin. The isophase contours that are multiples of 𝜋 are drawn with heavier
lines. The three-dimensional picture is obtained by rotating the figure about the beam axis
(the horizontal axis). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Many authors [3–10] have investigated methods to build up exact
solutions of the Helmholtz equation from solutions of the paraxial
equation, typically as expansions in powers of (𝑘𝑏)−1 or of 𝑤0∕𝑏 =
√

2∕𝑘𝑏. These expansions have problems, not just in complexity, but in
boundedness as well. A case in point is Wünsche’s [6] operator method,
which aims to get exact solutions from paraxial solutions by acting on
the latter with differential operators (given as infinite series of partial
derivatives with respect to 𝑧). We touch on this method in Appendix C.

Our aim here is different: we ask the question ‘can any physical
solution of the Helmholtz equation duplicate the Gaussian beam on the
axis, or in the focal plane?’ The answer to both questions is ‘no’, such
solutions do not exist. (By ‘physical’ is meant causal and having finite
beam invariants, as explained in the next Section.) This will be shown
in Sections 4 and 5. We also show, in Appendix B, that no Bessel–Gauss
beam can be the same in its focal plane as an exact solution. But first we
compare and contrast a recent exact solution with the Gaussian beam,
in Sections 2 and 3.

2. An exact solution and its properties

A recent paper [11] discusses solutions of the Helmholtz equation (1)
which represent transversely bounded beams, of the form

𝜓 (𝒓) = 𝑒𝑖𝑚𝜙 ∫

𝑘

0
𝑑𝑞𝑓 (𝑘, 𝑞) 𝐽𝑚

(

𝜌
√

𝑘2 − 𝑞2
)

𝑒𝑖𝑞𝑧. (5)

Beams of this form propagate along the 𝑧 direction. The wave mo-
tion is causal [11], meaning that far from the focal region there is
no backward propagation. Ref. [11] discusses wavefunctions with no
azimuthal dependence (𝑚 = 0), and gives an explicit expression for the
case where 𝑓 (𝑘, 𝑞) is proportional to 𝑞, in terms of Lommel functions of
two variables, or equivalently in terms of products of spherical Bessel
and Legendre functions. Proportionality to 𝑞 at small 𝑞 is sufficient to
ensure the finiteness of beam invariants and of physical quantities such
as the energy content per unit length of the beam ([11], Sections 5 and
6).

Wavefunctions of the form (5) can all be generalized to

𝜓 (𝒓) = 𝑒𝑖𝑚𝜙 ∫

𝑘

0
𝑑𝑞𝑓 (𝑘, 𝑞) 𝐽𝑚

(

𝜌
√

𝑘2 − 𝑞2
)

𝑒𝑖𝑞(𝑧−𝑖𝑏). (6)

The imaginary translation in 𝑧, which leads to the extra factor 𝑒𝑞𝑏 in
the integrand, leaves the Laplacian unchanged, so (6) is still an exact
solution of (1).

The 𝑚 = 0 beam with 𝑓 (𝑘, 𝑞) set equal to a constant in (6) does
approximate 𝜓𝐺 uniformly along the beam axis, with error of order
𝑒−𝑘𝑏. However, 𝑓 (𝑘, 𝑞) = constant is not physically possible: it does

Fig. 2. 𝜓𝑏 (𝜌, 𝑧) in the focal region, plotted for 𝑘𝑏 = 2, for 𝑘 |𝑧| ≤ 10, 𝑘𝜌 ≤ 10. Shading
indicates modulus of the wavefunction (logarithmic scale, lighter colour indicates larger
modulus). The isophase surfaces are shown at intervals of 𝜋∕3. The phase is chosen to be
zero at the origin. The isophase contours, other than those that are multiples of 𝜋, meet
on the zeros of 𝜓0 (𝜌, 𝑧), three of which are shown, at 𝑘𝜌 ≈ 4.77, 7.73 and 10.77. (For
interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

not give a finite energy content per unit length of the beam. For
example, the corresponding transverse magnetic (TM) beam has energy
content per unit length of the beam ([12], Eq. (26)) proportional to
∫ 𝑘0 𝑑𝑞𝑞

−1 (𝑘2 − 𝑞2
)

𝑒2𝑞𝑏, which diverges logarithmically.
As an example of a beam waveform which has all of the required

physical properties, we shall consider the wavefunction of Section 9
of [11]:

𝜓𝑏 (𝜌, 𝑧) =
𝑏2

[

𝑒𝑘𝑏 (𝑘𝑏 − 1) + 1
] ∫

𝑘

0
𝑑𝑞 𝑞 𝑒𝑞(𝑏+𝑖𝑧)𝐽0

(

𝜌
√

𝑘2 − 𝑞2
)

. (7)

The prefactor in (7) normalizes the wavefunction to unity at the origin
𝜌 = 0, 𝑧 = 0, for easier comparison with 𝜓𝐺 given in (2), which is also
normalized to unity at the origin.

We shall show that, for 𝑒𝑘𝑏 ≫ 1 and 𝜌2 ≪ 𝑏∕𝑘, where the Gaussian
waveform has some validity, the wavefunction 𝜓𝑏 corresponds closely
to it, provided that also |𝑧|≪ 𝑘𝑏2. There are no constraints on where 𝜓𝑏
may be used, being an exact solution of (1). Fig. 2 shows 𝜓𝑏 (𝜌, 𝑧) in the
focal region around the origin, for 𝑘𝑏 again set equal to 2.

On the beam axis 𝜌 = 0 we have

𝜓𝑏 (0, 𝑧) =
𝑏2

[

𝑒𝑘𝑏 (𝑘𝑏 − 1) + 1
] ∫

𝑘

0
𝑑𝑞 𝑞 𝑒𝑞(𝑏+𝑖𝑧)

=
( 𝑏
𝑏 + 𝑖𝑧

)2 𝑒𝑘(𝑏+𝑖𝑧) [𝑘 (𝑏 + 𝑖𝑧) − 1] + 1
[

𝑒𝑘𝑏 (𝑘𝑏 − 1) + 1
] . (8)

An explicit form of 𝜓𝑏 at a general point (𝜌, 𝑧) was found in [11],
using the fact that the expression (7) is a cylindrically symmetric non-
singular solution of the Helmholtz equation, and may thus be expanded
as a sum over products of Legendre polynomials and spherical Bessels,

𝜓𝑏 (𝜌, 𝑧) =
(𝑘𝑏)2

[

𝑒𝑘𝑏 (𝑘𝑏 − 1) + 1
]

∑

𝑎𝑛𝑃𝑛
( 𝑧 − 𝑖𝑏

𝑅

)

𝑗𝑛 (𝑘𝑅) ,

𝑅 = (𝑧 − 𝑖𝑏)
√

1 + 𝜌2∕(𝑧 − 𝑖𝑏)2. (9)

As in Ref. [11], 𝑅 is chosen as a branch of the complex radial coordinate
resulting from an imaginary displacement along the beam axis:

𝑟 =
√

𝜌2 + 𝑧2 → 𝑅 =
√

𝜌2 + (𝑧 − 𝑖𝑏)2. (10)

The coefficients 𝑎𝑛 in the expansion are given in [11], Appendix B. There
is only one non-zero odd coefficient, 𝑎1 = 2𝑖. The even coefficients we
shall rename as 𝑎2𝑛 = 𝐴𝑛, so that

𝜓𝑏 (𝜌, 𝑧) =
(𝑘𝑏)2

[

𝑒𝑘𝑏 (𝑘𝑏 − 1) + 1
]

{

2𝑖𝑃1
( 𝑧 − 𝑖𝑏

𝑅

)

𝑗1 (𝑘𝑅)

+
∞
∑

0
𝐴𝑛𝑃2𝑛

( 𝑧 − 𝑖𝑏
𝑅

)

𝑗2𝑛 (𝑘𝑅)

}

. (11)
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