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a b s t r a c t

The multipole expansion is a key tool in the study of light–matter interactions. All the information about the
radiation of and coupling to electromagnetic fields of a given charge-density distribution is condensed into
few numbers: The multipole moments of the source. These numbers are frequently computed with expressions
obtained after the long-wavelength approximation. Here, we derive exact expressions for the multipole moments
of dynamic sources that resemble in their simplicity their approximate counterparts. We validate our new
expressions against analytical results for a spherical source, and then use them to calculate the induced
moments for some selected sources with a non-trivial shape. The comparison of the results to those obtained
with approximate expressions shows a considerable disagreement even for sources of subwavelength size. Our
expressions are relevant for any scientific area dealing with the interaction between the electromagnetic field
and material systems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The multipolar decomposition of a given charge–current distribution
is taught in every undergraduate course in physics. The resulting set
of numbers are called the multipolar moments. They are classified
according to their order, i.e. dipoles, quadrupoles etc. For each order,
there are electric and magnetic multipolar moments. Each multipolar
moment is uniquely connected to a corresponding multipolar field.
Their importance stems from the fact that the multipolar moments of a
charge–current distribution completely characterize both the radiation
of electromagnetic fields by the source, and the coupling of external
fields onto it. The multipolar decomposition is important in any sci-
entific area dealing with the interaction between the electromagnetic
field and material systems. In particle physics, the multipole moments
of the nuclei provide information on the distribution of charges inside
the nucleus. In chemistry, the dipole and quadrupolar polarizabilities of
a molecule determine most of its properties. In electrical engineering,
the multipole expansion is used to quantify the radiation from antennas.
And the list goes on.

In this contribution, we present new exact expressions for the
multipolar decomposition of an electric charge–current distribution.
They provide a straightforward path for upgrading analytical and
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numerical models currently using the long-wavelength approximation.
After the upgrade, the models become exact. The expressions that we
provide are directly applicable to the many areas where the multipole
decomposition of electrical current density distributions is used. For the
sake of concreteness, in this article we apply them to a specific field:
Nanophotonics.

In nanophotonics, one purpose is to control and manipulate light on
the nanoscale. Plasmonic or high-index dielectric nanoparticles are fre-
quently used for this purpose [1,2]. The multipole expansion provides
insight into several optical phenomena, such as Fano resonances [3,4],
electromagnetically-induced-transparency [5], directional light emis-
sion [6–11], manipulating and controlling spontaneous emission
[12–14], light perfect absorption [15–17], electromagnetic cloak-
ing [18,19], and optical (pulling, pushing, and lateral) forces [20–24].
In all these cases, an external field induces displacement or conductive
currents into the particles. These induced currents are the source of the
scattered field. But: How can we calculate the multipole moments of
these induced current distributions?

Exact expressions exists and can be found in standard textbooks, e.g.
Eq. (7.20) in [25] or Eq. (9.165) in [26] (without the magnetization
current therein) and a new formulation have been recently derived
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in [27]. However, up to now they are not frequently used in the
literature. One reason for this may be their complexity, i.e. they feature
differential operators like the curl and/or vector spherical harmonics.
Instead, a long-wavelength approximation that considerably simplifies
the expressions is very often used in nanophotonics [28–34]. Their
integrands contain algebraic functions of the coordinate and current
density vectors. Moreover, the approximate expressions resemble those
for the multipole moments derived in the context of electro-statics and
magneto-statics. To set a starting point, these expressions are docu-
mented in Table 1. The so-called toroidal moments are also included
in these expression as the second term in the electric multipole mo-
ments [30,34,35]. It is important to mention that there is an alternative
approach to calculate the multipole moments which is based on the
scattered fields [26,36,37]. They are exact and valid for any particle’s
size. We note that the multipole moments, just as any other quantity
in physics, have identical physical meaning independent on their basis
(Cartesian or spherical) or which approaches (scattered fields or induced
currents) has been used to extract them. The change of basis (Cartesian
to spherical and vise versa) will not change the physical meaning of
the multipole moments (see the supplementary material for the relation
between two basis).

2. Derivation of the multipole moments

Let us first investigate the range of validity of the expressions in
Table 1 by comparing them with Mie theory. In Mie theory, the solution
for the scattering of a plane wave by a sphere is obtained without any
approximation, i.e. it is valid for any wavelength and size of the sphere.
For example, Mie theory allows to compute the individual contribu-
tions of each induced electric and magnetic multipole moment to the
total scattering cross-section. We will compare those exact individual
contributions to the ones obtained using the formulas in Table 1. We
consider a high-index dielectric nanosphere and a gold nanosphere. Both
are illuminated with a linearly 𝑥-polarized plane wave that propagates
in the 𝑧-direction. The induced multipole moments in both cases can be
computed using the expressions in Table 1. The induced electric current
density is obtained by using 𝐽𝜔 (𝐫) = 𝑖𝜔𝜖0

(

𝜖𝑟 − 1
)

E𝜔 (𝐫), where E𝜔 (𝐫) is
the electric field distribution, 𝜖0 is the permittivity of free space, and 𝜖𝑟 is
the relative permittivity of the sphere. The permittivity of the dielectric
sphere is assumed to be 𝜖𝑟 = 2.52. Dispersive material properties as
documented in the literature are considered for gold [38]. We assume
air as the host medium. We used a numerical finite element solver to
obtain the electric field distributions [39].

Using the multipole moments, it is easy to obtain the total scattering
cross section, i.e. the sum of the contributions from different multipole
moments, as [26]:
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where, 𝑝𝛼 , 𝑚𝛼 are the electric and magnetic dipole moments, respec-
tively. 𝑄𝑒

𝛼𝛽 , 𝑄𝑚
𝛼𝛽 are the electric and magnetic quadrupole moments,

respectively. |𝐄inc| is the electric field amplitude of the incident plane
wave, 𝑘 is the wavenumber, and 𝑐 is the speed of light.

Fig. 1 shows the contribution of each multipole moment to the
scattering cross section for a high-index dielectric as well as a gold
nanosphere. The results obtained using the approximate expression are
compared with those obtained from Mie theory. It can be seen that,
upon increasing the 𝑎∕𝜆 ratio, there is a large deviation between the
scattering cross section obtained from the expressions in Table 1 and
the Mie theory. The relative error between the two approaches is shown
in Fig. 1(c) and (d). The relative error is more than 100% for the

dielectric sphere at 2𝑎∕𝜆 ≈ 0.75 for both electric and magnetic dipole
moments. This large deviation occurs because the expressions in Table 1
are obtained in the long-wavelength approximation [26], i.e. they are
only valid for particles small compared to the wavelength of the incident
light (i.e. 𝐷 ≪ 𝜆 where 𝐷 is the biggest dimension of the particle).

Thus, the long-wavelength expressions in Table 1 can not be used
for large particles (compared to the wavelength). The large deviation
observed in Fig. 1(c) and (d) for different multipole moments will
significantly affect the quantitative prediction of multipolar interference,
which is the main physical mechanism behind Fano resonances [3,4],
directional light emission [8–11], and light perfect absorption [15,16].
Moreover, any physical quantity obtained using the multipole mo-
ments of Table 1, e.g. absorption/extinction cross section, or optical
torque/force, carries a corresponding error. Therefore, the application
of the exact expressions for the multipole moments is important since it
provides a better understanding of all the highlighted optical phenom-
ena and enables its quantitative prediction.

To improve the situation and indeed to provide error-free expres-
sions, we now derive exact expressions for the induced electric and
magnetic multipole moments that are valid for any wavelength and size
(see Table 2). They can be used to compute the multipole moments
of arbitrarily shaped particles. Our exact expressions for multipole
moments are very similar to the well-known expression obtained in long-
wavelength approximation (see Table 1).

Our starting point are the hybrid integrals in Fourier and coordinate
space in Eq. 14 of [35] (see the supplementary material). These integrals
are exact expressions for all the multipolar moments of a spatially
confined electric current density distribution. They are valid for any
size of the distribution. Crucially, the Fourier space part of the integrals
does not depend on the current density. The results in Table 2 are
obtained after carrying out the Fourier space integrals for the electric
and magnetic dipolar and quadrupolar orders (see the supplementary
material). Our results have two main advantages with respect to other
exact expressions [25–27]. One is that our formulas are simpler: The
previously existing expressions contain differential operators and/or
vector spherical harmonics inside the integrands, while ours contain
algebraic functions of the coordinate and current density vectors, and
spherical Bessel functions. The other advantage is that the previous
expressions lack the similarity to their long-wavelength approximations
that ours have (compare Tables 1 and 2). Therefor, our expressions allow
a straightforward upgrade of analytical and numerical models using
the approximated long-wavelength expressions. After the upgrade, the
models become exact.

Basically, any code that has been previously implemented to com-
pute the multipole moments with the approximate expression can be
made to be accurate with a marginal change.

In order to show the correctness of the expressions in Table 2, we
compute the contributions of different multipole moments to the scatter-
ing cross section and compare them to those obtained with Mie theory.
Fig. 2 shows the different contributions as a function of the particle’s
size parameter 2𝑎∕𝜆 for both the previously considered dielectric and
gold spheres. It can be seen that the results from our exact expressions
are in excellent agreement with those from Mie theory, irrespective of
the particle’s size parameter. Indeed, they are indistinguishable up to a
numerical noise level.

Up to now, we have considered only spherical particles that could
also be studied with Mie theory. We now use the new expressions in
Table 2 to calculate the induced moments of a canonical particle made
of two coupled nanopatches. Its geometry and the results are shown in
Fig. 3. The coupled nanopatches support a strong electric and magnetic
response. The radius and thickness of the coupled disk is assumed to be
𝑎 = 250 nm, 𝑡 = 80 nm, respectively. The spacer between the two disks is
𝑔 = 120 nm. It can be seen that there is a significant deviation between
the contributions to the scattering cross section from the different
multipole moments as predicted by the approximate (Table 1) and by
the exact (Table 2) expressions. The relative error is shown in Fig. 3(b).
Some of them reach 25% for a particle size of about half the wavelength.
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