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a b s t r a c t

Recently, we introduced a new class of radially polarized beams with multi-cosine Gaussian Schell-
model(MCGSM) correlation function based on the partially coherent theory (Tang et al., 2017). In this
manuscript, we extend the work to study the statistical properties such as the spectral density, the degree
of coherence, the degree of polarization, and the state of polarization of the beam propagating in isotropic
turbulence with a non-Kolmogorov power spectrum. Analytical formulas for the cross-spectral density matrix
elements of a radially polarized MCGSM beam in non-Kolmogorov turbulence are derived. Numerical results show
that lattice-like intensity pattern of the beam, which keeps propagation-invariant in free space, is destroyed by
the turbulence when it passes at sufficiently large distances from the source. It is also shown that the polarization
properties are mainly affected by the source correlation functions, and change in the turbulent statistics plays a
relatively small effect. In addition, the polarization state exhibits self-splitting property and each beamlet evolves
into radially polarized structure upon propagation.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decades, there has been a growing interest in the
evolution of partially coherent beams, either in free space or in turbulent
atmosphere [1–6]. This interest is motivated by a multitude of poten-
tial applications, briefly to free-space optical communications, remote
sensing and tracking [7,8]. The random fluctuations in the index of
refraction of atmosphere cause spreading of the beam beyond that due
to pure diffraction, beam wander, loss of spatial coherence, and random
fluctuations in the irradiance and phase. These effects can seriously
degrade the signal-to-noise ratio of an optical heterodyne receiver.
Therefore, much work has been devoted to a reliable theory for predict-
ing the propagation properties of light beams in turbulent medium. It
is demonstrated that the atmosphere exhibits homogeneous and nearly
isotropic under the atmospheric boundary layer, which is roughly 1–
2 km above the Earth’s surface. Therefore, the isotropic Kolmogorov
power spectrum model of refractive index is generally correct within
this inertial sub-range. However, in portions of the troposphere and
stratosphere, theoretical and experimental results have shown that the
Kolmogorov power spectrum does not properly describe the real tur-
bulence behavior. Consequently, a variety of different power spectrum
models and extended turbulence models have been proposed [9–12].
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Among them, the most popular one is the non-Kolmogorov spectrum
which is proposed by I. Toselli et al. [11]. It was assumed that instead
of classic power law11∕3 the power spectrum has a generalized law,
defined by parameter 𝛼, in the range 3 < 𝛼 < 5, as the one-dimensional
fractal distribution stipulates. Since the atmosphere was shown to be
layered in terms of the power spectra at different altitudes, many studies
were carried out on the modeling of the non-Kolmogorov spectrum
specifically for up/down/slant path propagation.

Due to the constraint of non-negative definiteness of the spatial
correlation functions, a Gaussian correlated Schell-model (GSM) beam
has always been chosen as a typical example of partially coherent
beams in the early years. Recently, a new sufficient condition for
devising genuine correlation functions of light beams was established
by Gori et al. [13,14], a variety of partially coherent beam models
with special correlation functions have been proposed in succession.
It is shown that these new classes of partially coherent beams exhibit
many novel propagation properties. Such as non-uniformly correlated
beams lead to self-focus and laterally shifted in their maximum inten-
sity [15,16], multi-Gaussian Schell-model beams and sinc-Schell model
beams acquire flat-top profile in the far-field [17,18], cosine-Gaussian
Schell beams with circular symmetry possess dark-hollow profile [19].
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Gaussian Schell-model array beams can radiate desirable lattice-like
average intensity in far-field [20]. In addition, the propagation factors
of several partially coherent beams have been investigated, one can
see that beams with special correlation functions are less affected by
turbulence than conventional GSM beams [21–23].

On the other hand, cylindrical vector (CV) beams with non-uniform
state of polarization (e.g., radially polarized beams, azimuthally polar-
ized beams) have attracted a wealth of attention due to their unique
and interesting properties [24,25], and have widely applications in
many research fields, for example, polarization information encryp-
tion, optical data storage, and optical tweezers [26]. Partially coher-
ent radially polarized beams with Gaussian Schell-model correlations
have been widely investigated both theoretically and experimentally
[27–29]. In the past several years, generation and propagation of
partially coherent radially polarized beams with peculiar correlations
have become a hot topic [30,31]. It has been revealed that under
the influence of non-conventional coherence properties, these novel
beams exhibit distinctive propagating characteristics. Quite recently,
we introduced a new class of partially coherent radially polarized beam
with multi-cosine Gaussian Schell-model (MCGSM) correlations, termed
as radially polarized MCGSM beams [32]. It is shown that the statistical
properties of radially polarized MCGSM beams in the far field can
be flexible modulated by varying the source coherence parameters.
Moreover, unlike deterministic arrays, once the pattern is formed in the
far field it remains structurally invariant on further propagation. Such
feature makes the beam of particular importance for certain applications
in which a far field with tunable lattice structure must be formed, such
as optical trapping, material processing, and free-space and atmospheric
optical communications.

In this manuscript, we explore the behavior of the statistical prop-
erties for radially polarized MGSM beams propagating in atmospheric
turbulence by using a non-Kolmogorov power spectrum. The impacts
arising from the source correlation functions and the turbulence param-
eters on the spectral density, the spectral degree of coherence and the
polarization properties are emphasized.

2. Analytic solutions for radially polarized MCGSM beams in non-
Kolmogorov turbulence

The elements of the cross-spectral density (CSD) matrix of a radially
polarized MCGSM beam in the source plane are described as [32]
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where (𝛼, 𝛽 = 𝑥, 𝑦), 𝝆′
1 and 𝝆′

2 are two-dimensional position vectors in the
source plane, 𝜎 denotes its source width , 𝛿0 represents spatial coherence
width, and 𝑁 is the positive integer. When 𝑁 = 1, the radially polarized
MCGSM beam reduces to a conventional radially polarized Gaussian
Schell-model beam. The realizability conditions for a radially polarized
MCGSM source and corresponding beam conditions are derived in our
recent work [32].

The paraxial form of the extended Huygens–Fresnel principle which
describes the interaction of waves with random medium implies the
elements of the CSD matrix at two points 𝐫𝟏 =
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in the same transverse plane of the half-space 𝑧 > 0 are related to those
in the source plane as [33]
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here 𝑘 = 2𝜋∕𝜆 is the wave number with 𝜆 being the wavelength of
the light, 𝜓 denotes the complex phase perturbation due to the random
medium, and ⟨⋅⋯ ⋅⟩𝑚 implies averaging over the ensemble of statistical
realizations of the turbulent medium. For points located sufficiently
close to the optical axis, the term in the sharp brackets with the subscript
𝑚 in Eq. (2) can be written as
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where 𝛷𝑛 (𝜅) is the one-dimensional spatial power spectrum of the
refractive-index fluctuations of random medium, 𝜅 being spatial fre-
quency. For the non-Kolmogorov case, the spatial power spectrum of
the refractive index fluctuations of the turbulent atmosphere is known
to have form [33]
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where 3 < 𝛼 < 4 and the term 𝐶2
𝑛 is a generalized refractive-index
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𝐿0 and 𝑙0 are the outer and inner scales of turbulence, respectively,
and 𝛤 (⋅) is the Gamma function. With the power spectrum in Eq. (4),
the integral in Eq. (3) becomes
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where 𝛽 = 2𝜅20 − 2𝜅2𝑚 + 𝛼𝜅2𝑚 and 𝛤 (⋅, ⋅) denotes the incomplete Gamma
function.

Substituting Eqs. (1) and (3) into Eq. (2) and calculating the resulting
integral we arrive at the formulas
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