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a b s t r a c t

Presented for the first time is a machine learning enhanced optical distance sensor. The distance sensor is based
on our previously demonstrated distance measurement technique that uses an Electronically Controlled Variable
Focus Lens (ECVFL) with a laser source to illuminate a target plane with a controlled optical beam spot. This
spot with varying spot sizes is viewed by an off-axis camera and the spot size data is processed to compute the
distance. In particular, proposed and demonstrated in this paper is the use of a regularized polynomial regression
based supervised machine learning algorithm to enhance the accuracy of the operational sensor. The algorithm
uses the acquired features and corresponding labels that are the actual target distance values to train a machine
learning model. The optimized training model is trained over a 1000 mm (or 1 m) experimental target distance
range. Using the machine learning algorithm produces a training set and testing set distance measurement errors
of <0.8 mm and <2.2 mm, respectively. The test measurement error is at least a factor of 4 improvement over our
prior sensor demonstration without the use of machine learning. Applications for the proposed sensor include
industrial scenario distance sensing where target material specific training models can be generated to realize
low <1% measurement error distance measurements.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Machine learning [1,2] involves the use of past experience to opti-
mize the performance of a particular algorithm. It is quickly establishing
itself as an important tool in a number of applications including financial
markets, self-learning robots, speech recognition, computer vision and
remote sensing [3–7]. Machine learning is also increasingly being
deployed in the optics domain, for example, in camera systems where
device-independent RGB colour information is estimated using a regu-
larized polynomial machine learning model [8], in spectroscopy where
a Support Vector Machines (SVM) based algorithm is used to classify
different types of steel [9], and in optical systems where the Modulation
Transfer Function (MTF) is estimated by feeding experimental data into
a Support Vector Regression (SVR) based algorithm [10]. Furthermore,
in optical communications, various machine learning techniques are
being deployed as part of the signal processing algorithms to tackle
various incoming optical signal properties such as amplitude and phase
noise [11,12].

In this paper, to the best of the authors’ knowledge, presented for
the first time is a machine learning enhanced optical distance sensor
which uses camera acquired multiple images of a target illuminated
spatially varying coherent laser beam spot produced by control of an
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ECVFL. A regularized polynomial regression based supervised machine
learning algorithm [1,2,13–16] is deployed in our previously proposed
ECVFL-based distance sensor design [17] where the ECVFL current is
controlled to change the size of an laser spot that strikes the target
sensing zone. Images of the varying target plane beam size are used to
extract features used to train the deployed supervised machine learning
algorithm. This unique correspondence between the set of target illumi-
nated beam sizes acquired at a certain target distance with the known
target distance value is exploited effectively in the machine learning
based operation of the demonstrated distance sensor. Compared to the
previous demonstration of our sensor [17], this paper introduces a
number of key innovations. In Ref. [17], an imprecise geometric optics
based model is deployed which uses the acquired laser spot size data to
give an intermediate distance measurement that is far from the actual
distance value. Using the intermediate measured and actual distance
values, a Two Dimensional (2-D) calibration plot is curve-fitted which
is referred to for classification of targets at unknown distances. Firstly,
this method has no guarantee of convergence. Secondly, the use of the
intermediate step introduces further sources of error as it involves an
additional curve-fitting operation.

In this paper, a regularized polynomial regression based machine
learning algorithm is deployed which uses a single greater than two
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Fig. 1. Design of the ECVFL-based optical distance sensor.

parameter mapping function which maps the features acquired from
the data to a distance measurement. In this paper, well established re-
gression algorithm techniques are deployed to train a machine learning
model with optimized parameters for lowest testing set errors possible.
Furthermore in Ref. [17], 100% of the acquired data is used for training
as well as testing purposes and thus the resulting maximum error value
is likely an underestimate of the error of the distance measurement
system. In this paper, 60% of the acquired data is denoted as the training
set and the remaining 40% is denoted as the testing set. The resulting
testing set error is a more realistic error of the sensor system. In addition,
the algorithm deployed in Ref. [17] is based on the geometrical optics
model which requires an initial distance ‘‘guess’’ to begin an iterative
procedure and that initial guess was provided by the Max–Min–max
mode of the sensor system [18]. In this paper where a machine learning
based algorithm is deployed, there is no need for an initial starting value
for the sensor operation.

The rest of the paper is arranged as follows. Section 2 gives an
overview of presented sensor design and its operations. Section 3 is the
experimental section and gives details of the proof of concept demon-
stration which involves machine learning sensor operations, experimen-
tal results, and a discussion on practical aspects of the technique. A
conclusion at the end of the paper summarizes the findings. An Appendix
section is also added that gives a description of the deployed regularized
polynomial regression machine learning algorithm.

2. Machine learning enhanced optical distance sensor

Fig. 1 shows the hardware design of the proposed machine learning
enhanced distance sensor. Light from a laser module entering a Micro-
scope Objective MO is focused onto a Pinhole 𝑃 before being collimated
by a collimation lens 𝑆. The collimated beam passes through an ECVFL
and a Bias Lens 𝐵𝐿, separated by a distance 𝑑𝑠, before striking a target
at distance 𝑑𝑡 from the 𝐵𝐿. The ECVFL is driven by a current 𝑖𝑒 which
corresponds to an ECVFL focal length 𝐹𝑒. The target illuminated spot
is viewed by an off-axis imager, which has a customized field of view
sufficient to cover illuminated targets over a chosen application range.
Both the imager and the ECVFL are operated from a single Controller
platform, such as a laptop computer. In each of the camera acquired
images, the area covered by the laser spot (in pixels) is denoted as 𝑥.

The basis of the machine learning enhanced sensor operation is as
follows. At a fixed 𝑑𝑡 plane, 𝑛 number of images are acquired, each
having a different 𝑖𝑒 value and a corresponding 𝑥 value. This is repeated
for m 𝑑𝑡 planes, where each plane is separated by fixed separation 𝛥𝑑𝑡.
All the acquired 𝑥 values are arranged into a matrix X of dimensions
𝑚 × 𝑛 such that X is given by:

𝐗 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥(1)1 𝑥(1)2 𝑥(1)3 ⋯ 𝑥(1)𝑛

𝑥(2)1 𝑥(2)2 𝑥(2)3 ⋯ 𝑥(2)𝑛

𝑥(3)1 𝑥(3)2 𝑥(3)3 ⋯ 𝑥(3)𝑛

⋮ ⋮ ⋮ ⋯ ⋮

𝑥(𝑚)1 𝑥(𝑚)2 𝑥(𝑚)3 ⋯ 𝑥(𝑚)𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (1)

where 𝑥(𝑖)𝑗 is the beam spot area (in pixels) of the 𝑗th image at the 𝑖th
target plane, and 𝑖 = 1, 2,…𝑚, 𝑗 = 1, 2,… 𝑛. ‘‘(𝑖)’’ is written in bracket
form to indicate that it is not the mathematical operation of the power,
but only used as a superscript. Note that from a machine learning point
of view, the columns of X represent n features and the rows represent
different training examples. Additionally, the m target planes constitute
the labels y where y is an 𝑚 × 1 matrix:
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where 𝑦(𝑖) is the target distance 𝑑𝑡 value at the 𝑖th target plane, and 𝑖 =
1, 2,… , 𝑚. The regularized polynomial regression hypothesis function h
is given by (see Appendix):

𝐡 = 𝐗𝜽, (3)

where h has dimensions of 𝑚 × 1 , and X is the modified feature matrix
for polynomial regression (see Appendix): See the equations in Box I.

A complete derivation of the above Equations is given in Appendix.
The objective of the algorithm is to find the optimum parameter matrix 𝜽
which allows Eq. (3) hypothesis function h to effectively predict distance
values for a given feature matrix X and corresponding labels y. In order
to optimize 𝜽, first a cost function J(𝜃) is utilized which is deployed as
part of the regularization based polynomial regression algorithm and is
given by (see Appendix):
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where 𝜆 is the regularization parameter. Next, using Eq. (10), the
gradient descent algorithm to find the training parameter matrix is as
follows (see Appendix):

Repeat until convergence:
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. (7)

Once the trained model parameters, i.e., the elements of the 𝜽 matrix
are obtained using the gradient descent algorithm, the testing phase
involves acquiring 𝑥 data for unknown target distances which is used
to predict respective distance values using the optimized hypothesis
function h from Eq. (3). The next section gives a step by step description
of the experimental steps involved in the machine learning enhanced
optical distance sensor operations.
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