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a b s t r a c t

Empirical mode decomposition (EMD) is widely used to analyze the non-linear and non-stationary signals for
noise reduction. In this study, a novel EMD-based denoising method, referred to as EMD with soft thresholding
and roughness penalty (EMD-STRP), is proposed for the Lidar signal denoising. With the proposed method, the
relevant and irrelevant intrinsic mode functions are first distinguished via a correlation coefficient. Then, the
soft thresholding technique is applied to the irrelevant modes, and the roughness penalty technique is applied
to the relevant modes to extract as much information as possible. The effectiveness of the proposed method was
evaluated using three typical signals contaminated by white Gaussian noise. The denoising performance was then
compared to the denoising capabilities of other techniques, such as correlation-based EMD partial reconstruction,
correlation-based EMD hard thresholding, and wavelet transform. The use of EMD-STRP on the measured Lidar
signal resulted in the noise being efficiently suppressed, with an improved signal to noise ratio of 22.25 dB and
an extended detection range of 11 km.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Lidar is a powerful remote sensing technology that has been ex-
tensively used in observations of the Earth’s atmosphere, including
atmospheric aerosols, clouds, water vapor and wind [1–4]. However,
the intensity of the Lidar signal decays with the square of the distance;
thus, the signal demonstrates both non-linear and non-stationary char-
acteristics. When the detection range is large, the Lidar signal become
extremely weak [5], and the signal is overwhelmed by background
noise and the noise from the optical detection system [6]. Efficiently
extracting the true signal from a signal with large amounts of noise is a
challenge that remains to be solved.

In the past few decades, several denoising methods, such as moving
average (MA), Fourier transform (FT), wavelet transform (WT), and em-
pirical mode decomposition (EMD) have been extensively investigated
for noise reduction of the Lidar signal. The MA technique is a low-pass
filtering method that averages several points from the input signal to
produce each point in the output signal. This method, however, cannot
eliminate meaningless values (especially negative values) that result
from noises produced by the detectors [7]. FT is a suitable denoising
method for the linear and the stationary signals, but signal distortion
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can easily occur when denoising the non-linear and non-stationary
signals owing to the lack of time–frequency localization. Although WT
overcomes the limitations of FT to a certain extent [8], it is hampered
by the required selection of a suitable basic wavelet function [9].

Recently, EMD, which was originally proposed by Huang et al. [10],
has demonstrated outstanding performance when applied to the non-
linear and non-stationary signals. The method can adaptively decom-
pose a given signal into a finite sum of components, called intrinsic
mode functions (IMFs) and a residual. The conventional EMD denoising
method consists of partially reconstructing the signal from the IMFs
that contain useful information and discarding those IMFs that primarily
carry noise [11]. However, the signal reconstruction lacks explicit cri-
teria for determining which modes are relevant. Moreover, the partially
reconstruction usually misses some useful information that is present
in the discarded modes. To improve the denoising abilities of EMD, a
series of EMD-based denoising methods have been developed [9,12–
16]. Tian et al. [9] proposed an automatic denoising method that
treated the typical range and the low-frequency fraction as the refer-
ence principles for deciding which IMFs should be removed as noise.
Unfortunately, calculation errors are introduced when the Lidar signal
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fluctuates greatly. In addition, wavelet thresholding and smoothing
techniques [13–16] have also been proposed to handle the irrelevant
modes, thereby maintaining the integrity of the useful information.
Gong et al. [16] proved that EMD combined with a soft thresholding is
effective in preserving the useful information related to sudden changes
in the Lidar signal for the near-field and low-altitude with high signal
to noise ratio (SNR) [17].

In this study, we propose a new method for denoising Lidar signals
that combines the correlation coefficient, the soft thresholding and
the roughness penalty. The proposed method is referred to as EMD-
STRP owing to the inclusion of the soft thresholding and the roughness
penalty. The correlation coefficient between the IMFs and the original
signal is used to distinguish the relevance of each IMF. Further, the soft
thresholding and the roughness penalty techniques are, respectively,
applied to the irrelevant and relevant modes to effectively extract the
useful information. To verify the feasibility of EMD-STRP, three typical
signals contaminated by white Gaussian noise were treated with several
different techniques, and their denoising effects were compared. Finally,
signal denoising was performed on the real Lidar signal.

2. Basic theory of EMD

EMD is a time–frequency analysis method that is particularly suitable
for analyzing the non-linear and non-stationary signals. The method can
adaptively decompose any signal into a series of IMFs based on the local
characteristic time scale of the signal itself. The IMFs are required to
satisfy two conditions: (1) the number of extrema and the number of
zero-crossings must either be equal or differ by one at most; (2) at any
point, the mean value of the envelope defined by the local maxima and
minima is zero. IMFs obtained via a sifting process are shown in Fig. 1.
The original signal is then decomposed into a number of IMFs and a
residual, as follows:

𝑥 (𝑛) =
𝐿
∑

𝑖=1
ℎ(𝑖) (𝑛) + 𝑟𝑒𝑠 (𝑛) (1)

where ℎ(𝑖)(n) stands for the decomposed IMF, L is the number of
extracted IMFs, and res (n) represents the final residual.

3. Principle of the EMD-STRP

3.1. Criterion of discriminating the IMF correlations

Consider a noiseless signal y(n) contaminated by an additive noise
e(n):

𝑥 (𝑛) = 𝑦 (𝑛) + 𝑒 (𝑛) . (2)

The objective is to solve the denoising problem by removing the
noise and to determine an estimate 𝑥∗(n) of the observed signal x(n).
For EMD-based denoising method, the main task is to select the relevant
modes for partial reconstruction, called EMD-PR, which is given by

𝑥∗ (𝑛) =
𝐿
∑

𝑖=𝑘𝑡ℎ

ℎ(𝑖) (𝑛) + 𝑟𝑒𝑠 (𝑛) (3)

in which 𝑘𝑡ℎ is the first selected index for partial reconstruction, which
can be determined by estimating the correlation coefficient between the
original signal and decomposition modes. The estimated 𝑥∗(n) can also
be rewritten as

𝑥∗𝑚 (𝑛) = 𝑥 (𝑛) −
𝑚
∑

𝑖=1
ℎ(𝑖) (𝑛) (4)

where m = 𝑘𝑡ℎ − 1. The correlation coefficient between x(n) and 𝑥∗𝑚(n)
is calculated as follows:

𝜌 (𝑚) =
𝑁
∑

𝑛=1
𝑥 (𝑛) 𝑥∗𝑚 (𝑛) ∕

√

√

√

√

𝑁
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𝑥2 (𝑛)

𝑁
∑
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(

𝑥∗𝑚
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Fig. 1. Pictorial representation of EMD.

in which N denotes the length of the signal. The value of 𝜌(m) is always
decreasing until it reaches a minimum. The value for 𝑘𝑡ℎ is given by

𝑘𝑡ℎ = arg 𝑙𝑎𝑠𝑡
1≤𝑚≤𝐿

{𝜌 (𝑚) ≥ 𝐶} + 1 (6)

where ‘‘last’’ denotes the last value in 𝜌(m) bigger than C. In general,
C belongs to [0.75, 0.85] [18]. Based on EMD-PR, the denoising effects
corresponding to different values of 𝐶 within this range are compared
and 𝐶 is finally set to 0.85 in this study. From the above analysis, we can
determine the value for 𝑘𝑡ℎ. Thus, the first 𝑘𝑡ℎ − 1 modes are irrelevant,
and the rest are relevant. The two types of modes are then processed
separately. Finally, the denoised signal can be realized by reconstructing
the denoised modes and the residual.

3.2. Soft thresholding denoising

EMD-based denoising methods can be classified into two main
categories: partial reconstruction and whole reconstruction with filtered
modes. The conventional EMD-PR technique is not always effective
when analyzing Lidar signals because the backscattering signal and
the noise may be extracted into the same IMF. Thus, the removal of
the irrelevant modes would lead to some useful information missing.
Existing research results show that the combination of EMD and the
thresholding techniques can significantly improve the denoising effect
of the irrelevant modes [15,18]. Compared with the hard thresholding,
the denoised signal processed by the soft thresholding has better smooth-
ness. Thus, we use the soft thresholding technique to acquire the buried
useful information in this paper [16]:
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∕0.6745 (8)

in which 𝑐𝑖(n) denotes the buried useful information that is extracted
from the irrelevant IMF, 𝑇𝑖 = 𝜎

√

2 ln (𝑁) is the universal threshold, 𝜎
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