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a b s t r a c t

Fourier ptychographic microscopy (FPM) is a recently developed wide-field and high-resolution (HR) imaging
technique, reconstructing HR spectrum from a series of low-resolution (LR) images at different illumination
angles. Although many significant progresses have been made in FPM in the past few years, imaging noise is
still an inevitable problem, which could seriously distort the results recovered using the conventional Fourier
ptychography approach without image preprocessing. Generally, before FPM reconstruction, a thresholding
denoising method is usually employed to eliminate the noise. However, conventional thresholding denoising
algorithms cannot differentiate useful signals from imaging noise effectively, thus these algorithms usually
eliminate signals and noise simultaneously. Here we propose an adaptive denoising method for FPM, which
takes advantage of the information redundancy in FPM to separate signal from noise during the recovery process
without any pre-knowledge about the noise statistics. Simulation and experimental results are presented to
evaluate the performance of the proposed method. It is demonstrated that this method can both improve the
accuracy and robustness of FPM and relax the imaging performance requirement for implementing high-quality
FPM reconstruction.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Fourier ptychographic microscopy (FPM) is a recently developed
wide-field and high-resolution (HR) imaging technique [1], which
utilizes angularly varying illumination and a phase retrieval algorithm
to surpass the diffraction limit of the objective lens [2–8]. Similar to the
conventional ptychography approaches [9,10], FPM shares its roots with
phase retrieval algorithm [2–8] and synthetic aperture imaging [11–16].
In a typical FPM imaging system, a fixed-position LED matrix is used for
angle-varied illuminations. At each illumination angle, a low-resolution
(LR) intensity image of the specimen, with the resolution determined
by the numerical aperture (NA) of the objective lens, is recorded. The
recorded LR images from different illumination angles can be iteratively
stitched in the Fourier domain to recover a HR complex image of the
specimen. The final reconstruction resolution is determined by the sum
of the NA of the objective lens and the largest incident angle of the LED
matrix.

In order to improve the imaging performance of FPM, a series of im-
proved algorithms have been proposed lately. Some of them improve the
reconstruction accuracy and the recovery resolution of FPM [17–24],
and others reduce measuring time of FPM imaging process and improve
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data acquisition efficiency [21,25–29]. However, imaging noise is still
an inevitable problem, which distorts high-frequency details and stains
the background of the recovered image [30]. Although several of the
methods described above, such as the Wirtinger flow optimization
and the adaptive step-size [20,29], suppress the image noise from the
final reconstruction results, they are achieved by means of improving
the FPM convergence properties and not really eliminate noise in
captured images. Take the example of the Wirtinger flow optimiza-
tion algorithm, this method generally reside on expensive processing
requirements, making it less appealing from a computational point of
view.

Generally, better quality images not only improve the accuracy of
FPM, but also improve its convergence speed. So, before FPM recon-
struction, a thresholding denoising method is usually used to eliminate
the noise in the initial data [21]. In the conventional thresholding
denoising method, a fixed threshold for denoising is generally obtained
by calculating the average intensity of the background of the dark-field
image. However, the main drawback of this method is that it cannot
differentiate useful signals and imaging noise effectively, thus these
algorithms usually dislodge signal and noise simultaneously. Thus, there
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is a trade-off between the resolution of the HR image and the denoising
effect in FPM.

As reported in [28], a key aspect of a successful FPM reconstruction
is the data redundancy requirement of the recovery process. Precisely,
such a data redundancy requirement is very important for recovering
the lost phase information of the specimen. At least 35% aperture
overlapping percentage in the Fourier domain is required for an ac-
curate reconstruction of both intensity and phase information in FPM.
Moreover, the FPM reconstruction result will not change significantly
when the percentage of empty pixels in the image is less than aperture
overlapping percentage in the Fourier domain. Based on the above
considerations, we propose an adaptive denoising method for FPM,
which takes advantage of the data redundancy in FPM. Different from
the conventional thresholding denoising method, the adaptive denoising
method introduces a difference matrix to separate signal from noise
during the recovery process without any pre-knowledge about the
noise statistics. In addition, we investigate the characteristic of the
difference matrix to implement the adaptive updating of the denoising
method. Simulation and experimental results are presented to evaluate
the performance of the proposed adaptive denoising method and it
is demonstrated that this method can both improve the accuracy and
robustness of FPM and relax the imaging performance requirement for
implementing high-quality FPM reconstruction.

2. Principle of FPM and adaptive denoising method

2.1. Principle of FPM

Before introducing the principle of the adaptive denoising method,
it is worthwhile to review the basic concepts of FPM. As detailed in [1],
a typical FPM platform consists of a LED matrix and a conventional
microscopy with a low NA objective lens. We sequentially turn on single
LED element in the matrix to illuminate the 2-D thin specimen from
different angles and capture the corresponding LR intensity image. Since
the 2-D thin specimen is illuminated by plane waves with different
angles, the spectrum of the specimen on the back focal plane of the
objective lens is shifted to the corresponding different positions. Thus,
some of the frequency components that are beyond the NA of the
objective lens are shifted into that is within the objective lens NA, so
that they can be transferred to the sensor plane for recording. Then,
these captured LR images are sequentially iterated in the Fourier domain
to update the spectral information in the corresponding sub-region. The
adjacent sub-regions overlap with each other, which extends the space-
bandwidth product (SBP) and restores high-frequency information that
exceeds the spatial resolution of the objective lens. Eventually, the HR
intensity and phase image of the specimen are reconstructed simultane-
ously.

There are five steps in the reconstruction process of traditional FPM
technology. First, initialize the HR complex amplitude distribution 𝑈0
with amplitude of the LR image corresponding to the vertically incident
plane wave. This HR complex amplitude distribution is used to gener-
ate multiple LR target images corresponding to different illumination
angles. Second, the spectral information in a certain sub-aperture of
the initial HR spectrum 𝑈0 is intercepted to produce a LR complex
amplitude distribution, which is called the target complex amplitude
distribution
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𝐼𝑚𝑡𝑒𝑖𝜑𝑚𝑡 (𝑚 represents the serial number of the captured
images). Third, maintain the phase of the target complex amplitude
image unchanged and update the amplitude portion
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𝐼𝑚𝑡 of the target
complex amplitude image

√

𝐼𝑚𝑡𝑒𝑖𝜑𝑚𝑡 with the actual measurement
√

𝐼𝑚𝑐
at the corresponding illumination angle, and finally we will get the up-
dated complex amplitude distribution
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𝐼𝑚𝑐𝑒𝑖𝜑𝑚𝑡 . Fourth, the spectrum
𝑢𝑚(𝑘𝑚𝑥, 𝑘𝑚𝑦) of the updated target complex amplitude image
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is obtained by using the Fourier transform, which is used for updating
the spectral components within the corresponding sub-aperture of the
HR spectrum. Fifth, this replace-and-update sequence is repeated for
all incident angles, and the fifth step is iterated several times until the
solution converges.

In traditional FPM iteration process, the captured LR images are di-
rectly denoised using a fixed threshold. This fixed threshold is generally
obtained by calculating the average intensity of the background in the
dark-field image. However, an unavoidable problem in this denoising
method is that it cannot distinguish noise from useful signals. This
problem is very noticeable in the denoising of the dark-field image,
because a large number of useful signals are usually weaker than the
noise in dark-field image, and this means that these useful signals
will be eliminated easily by using a fixed threshold denoising method.
Fig. 1 shows the denoising results for a dark-field image with different
denoising methods. As shown in Fig. 1(c), after using the conventional
fixed threshold denoising for the dark-field image, the noise of the dark-
field image is eliminated, but a large number of effective signals are also
eliminated. Eventually, such a loss of information will result in the lack
of details of the FPM reconstructed HR image.

2.2. Adaptive denoising method

In order to effectively eliminate the noise in captured images, a
noise discrimination factor is introduced to the third step of the above
process to differentiate useful signals and noise approximately, which is
expressed as 𝐶𝑚 =
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𝐼𝑚𝑐 −
√

𝐼𝑚𝑡. It can be seen that the updated image
distribution
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𝐼𝑚𝑐𝑒𝑖𝜑𝑚𝑡 can also be expressed as (𝐶𝑚 +
√

𝐼𝑚𝑡)𝑒𝑖𝜑𝑚𝑡 . It is
not difficult to find that 𝐶𝑚 is a matrix which has the same size as the
captured image, and its values represent the difference between actual
amplitude
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𝐼𝑚𝑐 and the amplitude portion
√

𝐼𝑚𝑡 of the target complex
amplitude image
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𝐼𝑚𝑐𝑒𝑖𝜑𝑚𝑡 at the identical illumination angle. In the
ideal noiseless case, the values of the 𝐶𝑚 matrix mainly concentrate
within a small vicinity around 0. Conversely, with the noise increasing
in captured images, the values of the 𝐶𝑚 matrix depart from 0 gradually.
Based on these premises, the matrix 𝐶𝑚 can be used to differentiate
useful signals from noise pixel by pixel approximately. Specifically, if
the value of a pixel in matrix 𝐶𝑚 is almost close to 0, it indicates that
the pixel tend to be noise. On the other hand, if the value of a pixel of
matrix 𝐶𝑚 is far away from 0, it means that the pixel is more likely to
be noise.

Based on the above knowledge, the adaptive denoising process of
images can be seen as making the value of the 𝐶𝑚 matrix as close as
possible to the ideal noise-free situation. The process of FPM recon-
struction using the adaptive method is shown in Fig. 2. First, similar to
the traditional FPM refactoring, it starts with a HR complex amplitude
distribution of the specimen profile: 𝑈0. Second, produce target complex
amplitude distribution
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𝐼𝑚𝑡𝑒𝑖𝜑𝑚𝑡 . Third, solve the difference matrix
𝐶𝑚 =

√

𝐼𝑚𝑐 −
√

𝐼𝑚𝑡 to differentiate noise from useful image signals, and
update the values of the matrix by setting the value of the 𝐶𝑚 matrix
which is far away from 0 to 0. The updated matrix 𝐶𝑚𝑢𝑝𝑑𝑎𝑡𝑒

is obtained
as a denoising factor. Fourth, the denoising matrix 𝐶𝑚𝑢𝑝𝑑𝑎𝑡𝑒

is used to
update the intensity components of the target images, while the phase
components remain unchanged, the resulting complex amplitude distri-
bution is (𝐶𝑚𝑢𝑝𝑑𝑎𝑡𝑒

+
√

𝐼𝑚𝑡)𝑒𝑖𝜑𝑚𝑡 . Fifth, the updated complex amplitude
distribution is used to modify the corresponding spectral regions of the
HR complex amplitude distribution 𝑈0. Lastly, this replace-and-update
sequence is repeated several times until the solution converges. Fig. 1(d)
shows the dark-field image using the adaptive denoising method. The
image not only eliminates the noise, but also preserves more useful
signals of the image compared with Fig. 1(c).

In the iterative process including adaptive denoising method, there
is a step that needs to be discussed, that is, the initialization of the
FPM iterative process. For FPM technology, it is common to use a
LR bright-field image to initialize the HR spectrum, but as a phase
retrieval algorithm, using a constant to initialize can also get the correct
convergence results. In the adaptive denoising method, the selection of
the initialization step can be discussed in different cases. In the first case,
all LR images are captured for adaptive denoising. In this case, a LR
bright-field image must be used to initialize, since this ensures that the
obtained 𝐶𝑚 matrix can distinguish between noise and useful signals. In

2



Download English Version:

https://daneshyari.com/en/article/5448999

Download Persian Version:

https://daneshyari.com/article/5448999

Daneshyari.com

https://daneshyari.com/en/article/5448999
https://daneshyari.com/article/5448999
https://daneshyari.com

