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a b s t r a c t

Learning piecewise linear regression has been recognized as an effective way for example learning-based single
image super-resolution (SR) in literature. In this paper, we employ an expectation–maximization (EM) algorithm
to further improve the SR performance of our previous multiple linear mappings (MLM) based SR method. In the
training stage, the proposed method starts with a set of linear regressors obtained by the MLM-based method, and
then jointly optimizes the clustering results and the low- and high-resolution subdictionary pairs for regression
functions by using the metric of the reconstruction errors. In the test stage, we select the optimal regressor for SR
reconstruction by accumulating the reconstruction errors of m-nearest neighbors in the training set. Thorough
experimental results carried on six publicly available datasets demonstrate that the proposed SR method can
yield high-quality images with finer details and sharper edges in terms of both quantitative and perceptual
image quality assessments.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The objective of single image super-resolution (SR) is to produce
a high-resolution (HR) image by using only one low-resolution (LR)
image as input [1]. The SR technique has gained great attention in
literature due to its capacity of generating a high-quality image with fine
details that a low-cost imaging system cannot directly obtain. Roughly
speaking, the existing single image SR approaches can be divided into
three categories: interpolation-based SR methods, reconstruction-based
SR methods, and example learning-based SR methods.

Interpolation-based SR methods [2–5] typically employ a fixed base
function or an analytical interpolation kernel to estimate millions of
the unknown pixels in the HR grids. This group of methods is simple
but efficient, and ready for real-time applications. However, most
approaches tend to generate noticeable artifacts along salient edges and
blurring high frequency details in texture areas, leading to unacceptable
perceptual quality for many applications.

The second group of SR techniques is referred to as reconstruction-
based techniques, which strive for integrating a certain priori knowledge
(represented as one or more regularization terms) into the process of
SR reconstruction so as to obtain a stable solution [6–12]. Usually,
the edge-directed priors such as the edge prior [6,7], the gradient
profile prior [8,9], and the total variation [10], are popularly used
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for maintaining sharp edges. Another effective prior that exploits
the self-similarity redundancy inside the input LR image itself [11]
and [12], shows promising SR capacity under the reconstruction-based
framework. While the reconstruction-based approaches are effective at
producing sharp edges and suppressing annoying artifacts, they are still
cumbersome for adding novel details, especially in the case of a large
magnification factor (e.g., larger than ×2).

Example learning-based SR methods typically use a set of LR–HR
image pairs as prior to establish the mapping relationship between the
LR and HR images. In terms of how the input, output, and mapping
relationship are established, the representative learning models can be
further divided into four subclasses, i.e., k-nearest neighbor (k-NN)
learning-based [13,14], manifold learning-based [15,16], dictionary
learning-based [17–19], and regression-based SR methods [20–28].

The seminal k-NN learning-based SR method was proposed by
Freeman et al. [13], where the belief propagation algorithm is applied
to train a Markov network for image SR reconstruction. Sun et al. [14]
followed up Freeman’s method by introducing the primal sketch prior
to alleviate the blurred effects on details of edges, ridges, and corners.
Although the above methods can add lots of novel details into an
input LR image, one of the most challenging problems is their intensive
computational cost. Chang et al. [15] proposed neighbor embedding
(NE)-based learning for SR, assuming that the two manifolds of the LR
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feature space and the corresponding HR feature space are locally in
similar local geometries. This method, to a certain degree, breaks the
limitation of huge samples suffered in [13] and [14], and therefore can
achieve better reconstruction quality with a relatively smaller number
of training examples. The k-NN and NE-based SR algorithms need to
search a huge reference dataset for similar patterns in order to optimally
represent complicated structures in generic images, so the SR lacks the
efficiency for practical applications.

Dictionary-based SR approaches assume that a nature image patch
admits a sparse representation over an over-complete dictionary. Based
on this assumption, the HR image patches are synthesized by adaptively
choosing the most relevant atoms for SR reconstruction with the sparsity
regularity. The pioneering work was proposed by Yang et al. [18], where
an external database composed of related LR–HR patches is used to
jointly learn a compact dictionary pair by enforcing 𝐿1-norm regularity
prior. Under the similar framework to Yang’s method, Zeyde et al. [19]
improved the SR efficiency using PCA-based dimensionality reduction
and Orthogonal Matching Pursuit (OMP) [29] for sparse coding. Al-
though dictionary learning-based methods have notable advantages of
reconstruction quality and memory allocation, the main weakness is
their intensive computational cost of sparsity decomposition at both the
training and the inference stages.

Currently, learning piecewise linear regression for single image SR
has received much attention in the SR research domain, aiming at
improving efficiency while maintaining quality. The main idea behind
this particular SR technique is to learn a set of linear regressors from the
manifold of LR patches to that of the HR patches with the manifold as-
sumption. For example, Timofte et al. [20] proposed anchored neighbor
regression (ANR) to alleviate the bottleneck of sparse coding for efficient
SR reconstruction. They further extended the ANR to A+ [21] by
learning the piecewise linear regressors from the training set of the local
correlative neighbors of the anchored atoms. Yang et al. [22] advocated
learning a set of simple mapping functions from numerous image
subspaces using multivariate linear regression. Other similar follow-ups
of regression-based SR approaches can be found in [23] and [24]. In
addition, a deep learning-based method which uses a deep convolutional
neural networks (CNN) to model the mapping relationship between
the LR and HR images was presented in [25], showing promising SR
performance. In [26], multiple linear mappings (MLM) are built for
efficient SR by learning a set of orthogonal LR subdictionary and the
inferred HR subdictionary with the assumption that the LR–HR features
share the same representation.

In this paper, we extend to further improve the SR performance of
our previous MLM-based SR approach by following up a jointly learning
viewpoint proposed in [21]. The main motivation behind this work
is that in the MLM-based method, the partition of feature space and
the learning of mapping relationship are separately conducted, so the
learned regression functions may be not optimal for the whole training
dataset. Inspired by this motivation, in the training stage we start with
the linear regressors obtained by the MLM-based method, and then use
an expectation–maximization (EM) algorithm to jointly optimize the
clustering results and the low- and high-resolution subdictionary pairs
in terms of the metric of reconstruction errors. In the test stage, the
optimal regressor is chosen by accumulating the reconstruction errors
of m-nearest neighbors in the training set, which enables to alleviate
mismatching when the input is close to the border error of clusters.

The remainder of the paper is organized as follows. In Section 2
we detail the proposed SR method. Section 3 presents the experimental
results and assesses the SR performance by comparing with other state-
of-the-art SR methods in literature. Finally, we conclude the paper and
discuss the future research direction in Section 4.

2. The proposed SR method

In this section, we begin with the introduction of our previous MLM-
based SR method [26] and then detail the optimized MLM (OMLM)-
based method based on an EM algorithm [28]. Finally, we outline the
proposed SR algorithm in the test stage.

2.1. Multiple linear mappings revisited

The main idea behind the MLM-based SR approach is to employ a
set of simple linear regressors for an efficient SR reconstruction. In the
learning stage, a large number of LR–HR image pairs are collected to
generate a training dataset, which is comprised of two feature spaces:
the LR feature space 𝐗𝑠 =

{

𝐱𝑖𝑠
}𝑁𝑠
𝑖=1 and the corresponding HR feature

space 𝐘𝑠 =
{

𝐲𝑖𝑠
}𝑁𝑠
𝑖=1, where 𝐱𝑖𝑠 ∈ R𝑑1 is the feature vector representing

the 𝑖th LR image patch, 𝐲𝑖𝑠 ∈ R𝑑2 is its counterpart representing the
𝑖th HR image patch, and 𝑁𝑠 is the number of LR–HR image pairs. To
approximate the complicated nonlinear structure of the feature space
spanned by a large number of images, the standard 𝑘-means clustering
algorithm [30] is applied to divided the feature space of training
exemplars into 𝐾 coupled LR–HR feature subspaces

{
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𝑘
𝑠
}𝐾
𝑘=1, where
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𝑘th subspace of 𝐘𝑠 using the same indices as 𝐗𝑘
𝑠 , and 𝛺𝑘 stands for

the specified index set of 𝐗𝑘
𝑠 . With the obtained 𝐾 coupled LR–HR

feature subspaces
{
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𝑘
𝑠
}𝐾
𝑘=1, the problem of finding an optimal LR–HR

subdictionary pair which shares the same representation coefficients is
to minimize the data-cost function as:
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(1)

where 𝐁𝑘
𝑙 is the 𝑘th LR subdictionary that best represents all the feature

vectors in 𝐗𝑘
𝑠 , 𝐁𝑘

ℎ is the 𝑘th HR subdictionary that best represents all the
feature vectors in 𝐘𝑘

𝑠 , and 𝐚𝑖 denotes their shared coefficient vector for
linearly combining the LR dictionary atoms to represent 𝐱𝑖𝑠 and the HR
dictionary atoms to represent 𝐲𝑖𝑠.

In [26], the learning structure of the LR subdictionary is imposed by
an orthonormal constraint, which can be formulated as below:
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where 𝐗𝑘
𝑠 is the data matrix in which each column is a vector from the

subspace
{

𝐱𝑖𝑠
}

𝑖∈𝛺𝑘
, ‖⋅‖𝐹 denotes the Frobenius norm for matrices, and 𝐈

is an 𝑚-by- 𝑚 identity matrix. With the same representation coefficients,
the HR subdictionary is directly inferred by minimizing the least-squares
error as below:
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where 𝐘𝑘
𝑠 is the data matrix in which each column is a vector from all the

feature vectors in the 𝑘th subspace 𝐘𝑘
𝑠 , and 𝐀𝑘 is the coefficient matrix

that contains
{

𝐚𝑖
}

𝑖∈𝛺𝑘
as its columns. The optimization in Eq. (3) can

be easily solved by the least squares as:
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. (4)

Finally the mapping matrix corresponding to the 𝑘th coupled LR–HR
subspace can be calculated by

𝐅𝑘 = 𝐁𝑘
ℎ

(

𝐁𝑘
ℎ
𝑇𝐁𝑘

ℎ + 𝜆𝐈
)−1

𝐁𝑘
𝑙
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2.2. Optimized multiple linear mappings for SR

In this subsection, we start from the mapping functions obtained
from the MLM-based method and follow the spirit of [28] to improve
the performance of the MLM-based SR method by jointly learning the
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