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a b s t r a c t

We propose a processor based on the concatenation of two fractional temporal Talbot dispersive lines with
balanced dispersion to perform the DFT of a repetitive electrical sequence, for its use as a controlled source of
optical pulse sequences. The electrical sequence is used to impart the amplitude and phase of a coherent train
of optical pulses by use of a modulator placed between the two Talbot lines. The proposal has been built on a
representation of the action of fractional Talbot effect on repetitive pulse sequences and a comparison with related
results and proposals. It is shown that the proposed system is reconfigurable within a few repetition periods, has
the same processing rate as the input optical pulse train, and requires the same technical complexity in terms of
dispersion and pulse width as the standard, passive pulse-repetition rate multipliers based on fractional Talbot
effect.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Fractional Talbot effect [1] in the temporal domain [2] represents
a successful framework for the coherent manipulation and control of
picosecond pulse trains using linear optics. The range of demonstrated
applications includes the multiplication of the repetition rate of the
intensity [3] with optical fiber [4–7], chirped fiber Bragg gratings [8,9],
or spectral line-by-line pulse shaping [10], and also at switchable [11],
tunable [12], and programmable [10,13–16] repetition rates. It has also
led to systems capable of factorizing prime numbers [17], amplifying a
subsequence of pulses by the coherent addition of the remaining pulses
in the train [18], or mitigating nonlinear impairments in pulse trans-
mission by divided pulse amplification [19]. The effect has been used
for implementing programmable spectral OCDMA codes [20], and also
to perform fractional averages of pulse trains [21]. Being a collective
phenomenon, it shows inherent capacities to smooth imperfections in
the input periodic pattern, such as amplitude of timing errors [22–24]
and, for the same reason, it can produce clock signals even when the
train is on–off keyed [25–28]. Finally, self-imagined pulse trains can
be compactly generated by use of injection-locked frequency-shifted
feedback lasers [29,30].

Some of these demonstrations are based on self-imagined pulse trains
where the unit cell or input repetitive pattern, rather than a single pulse,
is a pulse sequence [13–21]. The basic output of this type of processors is
a repetitive sequence of 𝐿 optical pulses with a total sequence duration
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𝑇 . Such an optical train is described by an electric field of the form:

(𝑡) = 𝑒(𝑡)𝑒𝑗𝜔0𝑡 = 𝑒𝑗𝜔0𝑡
+∞
∑

𝑚=−∞

𝐿−1
∑

𝑛=0
𝑐𝑛 𝑝 (𝑡 − 𝑛𝑇 ∕𝐿 − 𝑚𝑇 ) , (1)

where 𝑒(𝑡) is the complex optical envelope, 𝜔0 the optical central
frequency, 𝑝(𝑡) is the pulse envelope, and 𝑐𝑛 a complex sequence of
length 𝐿 that accounts for the amplitude and phase of the pulses in the
fundamental period of the train. Restricting to direct-detection schemes,
control of coefficients 𝑐𝑛 allows for several applications of the train. On
the one hand, direct detection of (1) leads to a signal composed of the
repetition of the sequence |𝑐𝑛|

2, finding immediate application as a pro-
grammable electrical waveform generator [13]. On the other, sequence
|𝑐𝑛|

2 can be employed to encode a binary or multilevel unipolar code.
The resulting train defines a repetitive optical code of use in time-spread
OCDMA [31] or incoherent pulse-compression systems [32].

Previous studies [33,34] were focused on systems where the control
of the output sequence 𝑐𝑛 is performed through a repetitive set of voltage
levels 𝑥𝑛 driving a modulator, so that 𝑐𝑛 is proportional, up to a phase,
to the Discrete Fourier Transform (DFT) of sequence 𝑥𝑛. In our examples
above, this means that electrical waveforms or optical codes can be
designed by Fourier synthesis. Moreover, if 𝑥𝑛 represents an unknown
data sequence that is periodically addressed to the modulator, direct
detection of the train provides an estimate of its DFT power spectrum,
with the sole latency associated to optical propagation and detection.
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The architecture analyzed in [33] is somewhat demanding, as it requires
at least an additional phase modulation stage. The second proposal [34]
is simpler, as this stage is avoided, but shows tighter requirements on
the maximum allowable pulse width. In this case, the basic scheme
is based on a 1∕𝑁2 Talbot line, which has been used to demonstrate
programmable pulse repetition rate multiplication (PRRM) [13,16] and
electrical waveform generation [13,35] in a fixed dispersive line.

In this paper, we introduce an architecture for the manipulation of
optical pulse trains composed of periodic pulse sequences through the
DFT of a control sequence, with the objective of providing a simpler
implementation of the concept. The proposal is based on an optical
pulse source, two Talbot dispersive lines with matched dispersion, and
an intermediate modulation stage. Related schemes have been used
to perform analog processing of optical or electrical, continuous-time
signals within a certain temporal aperture, such as optical [36] and
electrical [37] waveform magnification using time lenses and time
stretch, respectively, or temporal Vander Lugt filters using temporal
holograms [38]. In our proposal, however, both dispersive sections
are fractional Talbot lines, so the system operates upon pulse-to-pulse
multi-interference. After dispersion in the first fractional Talbot line, the
optical pulses are modulated by the control levels 𝑥𝑛 using electro-optic
modulation, and are subsequently dispersed in a second fractional Tal-
bot line. In contrast to previous approaches, this architecture shows the
same technical requirements with regard to dispersion and pulse width
as the standard, passive, PRRM systems, while keeping advantages such
as a DFT processing rate equal to the input pulse repetition rate and
absence of the initial, compensating phase modulation stage.

Our presentation is based on a compact description of fractional
Talbot effect of pulse sequences by use of discrete-signal formalism.
In particular, general fractional Talbot effect is here described, for the
first time to the best of our knowledge, by use of a linear, discrete-
signal transform mapping the complex amplitudes of input and output
pulse sequences. This formalism reflects a close similarity with stan-
dard, continuous-time Fourier optics transformations. The transform
is introduced in Section 2, and its construction is based on recent
results regarding the structure of the quadratic Gauss sums that underlie
fractional Talbot effect [39–41]. Our proposal is presented in Section 3,
together with a brief account of previous developments. In Section 4,
we discuss the practical differences between them and present our
conclusions.

2. Discrete signal transform induced by fractional Talbot effect

The temporal Talbot effect can be introduced as follows [1]. Let us
consider an optical periodic train described by an electric field whose
envelope 𝑒(𝑡) consists of the repetition of a waveform 𝑤(𝑡), with 𝑤(𝑡) ≠ 0
in 0 ≤ 𝑡 < 𝑇 :

𝑒(𝑡) =
+∞
∑

𝑚=−∞
𝑤 (𝑡 − 𝑚𝑇 ) . (2)

This field feeds a delay line with lowest-order dispersion 𝜙 = 𝑑𝜏∕𝑑𝜔,
which is the derivative of group delay 𝜏 with respect to the optical
central frequency 𝜔0. Fractional Talbot effect refers to the structure of
the periodic output at concrete values of 𝜙, determined by period 𝑇 and
two positive and mutually prime integers, 𝑝 and 𝑞:

2𝜋|𝜙| =
𝑝
𝑞
𝑇 2. (3)

Ratio 𝑝∕𝑞 defines the order of the fractional temporal Talbot effect. In
diffractive optics, this corresponds to propagation lengths 𝑧 = (𝑝∕𝑞)𝑧𝑇
with 𝑧𝑇 = 𝓁2∕𝜆, 𝓁 being the period of the grating and 𝜆 the wavelength.
At these values of dispersion, the output envelope is:

𝑒′(𝑡) =
+∞
∑

𝑚=−∞

𝑞−1
∑

𝑛=0

𝑒𝑗𝜎𝜙𝜉𝑛
√

𝑞
𝑤
(

𝑡 − 𝑛𝑇
𝑞
− 𝑚𝑇 − 𝑒𝑝𝑞

𝑇
2

)

, (4)

where 𝜎𝜙 = ±1 is the sign of dispersion 𝜙 and 𝑒𝑥 represents the parity
of integer 𝑥, so that 𝑒𝑥 = 0 when 𝑥 is even and 𝑒𝑥 = 1 when 𝑥 is odd.

The output periodic waveform, of the same period 𝑇 , is composed of
the coherent sum of 𝑞 replicas of the input waveform 𝑤(𝑡), mutually
shifted by 𝑇 ∕𝑞, weighted by phase and amplitude factors, and with
an additional half-period shift when the product 𝑝𝑞 is odd. The Talbot
weighting factors are of constant amplitude and quadratic phase:

1
√

𝑞
𝑒𝑗𝜉𝑛 = 1

√

𝑞
𝑒𝑗𝜉0𝑒𝑗𝜋𝑠𝑛

2∕𝑞 ≡ 𝑡𝑛, (𝑛 = 0,… , 𝑞 − 1) (5)

where both the integer 𝑠(𝑝, 𝑞) and the phase exp[𝑗𝜉0(𝑝, 𝑞)] are functions
of 𝑝 and 𝑞 enclosing the result of the quadratic Gauss sums that underlie
fractional Talbot effect. This set of weighting factors are periodic with
period 𝑞, and thus (5) constitutes a chirp sequence with chirp rate
𝑠, which here will be simply referred to as the Talbot sequence and
denoted by 𝑡𝑛. Explicit expressions and properties of 𝑠 and exp(𝑗𝜉0) are
described in [39–41]. Apart from concrete values of 𝑠 and exp(𝑗𝜉0), in
our development we will only need that 𝑠 is a positive integer coprime
with and of opposite parity to 𝑞, so that the product 𝑠𝑞 is always even.

These formulas can be specialized to input waveforms composed of
optical pulses. Following Fig. 1, let us consider an input waveform 𝑤(𝑡)
which comprises 𝑞 pulses of width 𝛥𝑡 < 𝑇 ∕𝑞, separated by 𝑇 ∕𝑞, and with
complex amplitudes 𝑎𝑘:

𝑤(𝑡) =
𝑞−1
∑

𝑘=0
𝑎𝑘 𝑝 (𝑡 − 𝑘𝑇 ∕𝑞) . (6)

The set of 𝑞 complex amplitudes 𝑎𝑘 will be referred to as the input
sequence. Using this expression in (4), and taking for simplicity 𝜎𝜙 = 1,
we get

𝑒′(𝑡) = 𝑒𝑗𝜉0
√

𝑞

+∞
∑

𝑚=−∞

𝑞−1
∑

𝑘,𝑟=0
𝑒𝑗𝜋𝑠𝑟

2∕𝑞 𝑎𝑘 𝑝
(

𝑡 − (𝑟 + 𝑘)𝑇
𝑞
− 𝑚𝑇 − 𝑒𝑝𝑞

𝑇
2

)

. (7)

The inner sum can be separated as ∑𝑘−1
𝑟=0 +

∑𝑞−1
𝑟=𝑘 , and changing the

variable to 𝑟′ = 𝑟 + 𝑞 in the first of these sums we are led to:
+∞
∑

𝑚=−∞

𝑞−1
∑

𝑘=0

[

𝑞−1+𝑘
∑

𝑟′=𝑞
𝑒𝑗𝜋𝑠(𝑟

′−𝑞)2∕𝑞 𝑎𝑘 𝑝
(

𝑡 − (𝑟′ + 𝑘 − 𝑞)𝑇
𝑞
− 𝑚𝑇 − 𝑒𝑝𝑞

𝑇
2

)

+
𝑞−1
∑

𝑟=𝑘
𝑒𝑗𝜋𝑠𝑟

2∕𝑞 𝑎𝑘 𝑝
(

𝑡 − (𝑟 + 𝑘)𝑇
𝑞
− 𝑚𝑇 − 𝑒𝑝𝑞

𝑇
2

)

]

. (8)

The phase is periodic with period 𝑞, since the product 𝑠𝑞 is even, and
using a second change of variable 𝑚′ = 𝑚 − 1 in the first sum we may
present (8) as:
+∞
∑

𝑚=−∞

𝑞−1
∑

𝑘=0

𝑞−1+𝑘
∑

𝑟=𝑘
𝑒𝑗𝜋𝑠𝑟

2∕𝑞 𝑎𝑘 𝑝
(

𝑡 − (𝑟 + 𝑘)𝑇
𝑞
− 𝑚𝑇 − 𝑒𝑝𝑞

𝑇
2

)

, (9)

Finally, with the change 𝑛 = 𝑟 + 𝑘 we get a train of the form:

𝑒′(𝑡) =
+∞
∑

𝑚=−∞

𝑞−1
∑

𝑛=0
𝑏𝑛 𝑝

(

𝑡 − 𝑛𝑇
𝑞
− 𝑚𝑇 − 𝑒𝑝𝑞

𝑇
2

)

, (10)

where the output sequence 𝑏𝑛 of pulse amplitudes is given by a linear
transform  , here referred to as the Talbot transform, of the input
sequence 𝑎𝑘:

𝑏𝑛 =  ({𝑎𝑘})𝑛 =
𝑒𝑗𝜉0
√

𝑞

𝑞−1
∑

𝑘=0
𝑒𝑗𝜋𝑠(𝑛−𝑘)

2∕𝑞 𝑎𝑘 = 𝑡𝑛 q⃝𝑎𝑛. (11)

As shown in the final part of the equation, the Talbot transform 
can also be expressed as a 𝑞-point circular (or periodic) convolution q⃝
[42, ch. 5] between input and Talbot sequences. In fact, (11) defines a
series of transforms acting on 𝑎𝑘 sequences of length 𝑞, which depends
on integer 𝑠 = 𝑠(𝑝, 𝑞). For any 𝑠, the transform is unitary and circulant,
and its inverse can be physically implemented by a Talbot line of the
same order and opposite dispersion.

We stress that, in general, (11) can be used to describe the output op-
tical pulse trains at arbitrary Talbot planes when the input has the form
(6). To gain further insight into this formalism, we briefly describe some
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