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a b s t r a c t

In this paper, we present a particular theoretical analysis of the impact of 3rd-order dispersion on the photonic
time-stretch (PTS) system. Analytical expressions of all harmonics with time-dependent attenuation caused by
3rd-order dispersion of the PTS system are derived, for the first time to the best of our knowledge. The theoretical
analysis is based on strict derivation rather than small signal modulation. The effectiveness of the analytical model
is verified by a simulated experiment. Our proposed theoretical analysis has guidance role for PTS system design.

© 2017 Published by Elsevier B.V.

1. Introduction

Photonic analog-to-digital conversion has attracted lots of research
interest in recent decades due to its potential in achieving extremely
high sampling rate [1–4]. Of all the techniques employed to improve the
performance of ADC, photonic time-stretch (PTS) has been extensively
investigated due to its capability of scaling the sampling rate [5–10].
In a PTS system, an optical pulse emitted from a mode-locked laser
propagates through two highly dispersive mediums to get dispersed.
The radio-frequency signal is modulated on the optical pulse after the
first dispersive medium to perform the time-to-wavelength mapping
and the signal is stretched in the time as the pulse further chirped
after the second dispersive medium. Previous works have addressed
on theoretical model of the PTS system with second-order group-
velocity dispersion (GVD) which cause dispersion penalty and harmonic
distortion [5–10].

Generally, optical fibers are usually used as the dispersion medium
in the PTS system and the electro-optic intensity modulator is Mach–
Zehnder modulator (MZM). It is well known that the optical fiber
possesses nonlinear GVD characterized by the higher order derivative
terms of propagation constant 𝛽 with respect to angular frequency, such
as 𝛽3, etc. If pulse width is less than 1 ps, the impact of term caused
by3rd-order dispersion 𝛽3 should not be ignored [11,12]. In PTS system,
𝛽3 brings about residual phase error to the stretched signal. The effect
of this phase error will cause the amplitude of demodulated stretched
signal being both time and frequency dependent, so it can hardly be
corrected through post-signal processing. In [7], theoretical derivation
of time-dependent attenuation under the assumption of linear modu-
lation are presented and the influence of 𝛽3 is summed up as making
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𝛽2 wavelength sensitive and causing a time-dependent attenuation via
wavelength-to-time mapping.

In this paper, we present a detailed analytical model of the PTS sys-
tem with 3rd-order dispersion. Analytical expressions of all harmonics
with time-dependent attenuation caused by 3rd-order dispersion of the
PTS system are derived, for the first time to the best of our knowledge.
The theoretical analysis is based on strict derivation rather than small
signal modulation. To normalize the impact of 3rd-order dispersion,
a ratio factor to measure the extent of time-dependent attenuation is
introduced. Numerical simulations are presented to verify the proposed
theoretical model.

2. Principle

Schematic illustration of the PTS system is shown in Fig. 1. An
optical pulse generated by the super-continuum source is chirped and
broadened after propagating through the first spool of fiber which
induces the effects of GVD. When the chirped optical pulse is modulated
with an input radio-frequency (RF) by a MZM, the time-domain RF
signal is mapped into wavelength-domain. As a result of propagating
through the second spool of fiber, the RF signal is stretched in the time
as the pulse is further chirped.

Assuming the ultrashort optical pulse emitted from the super-
continuum source is Gaussian-shaped, the electric field can be expressed
as

𝑒1(𝑡) = 𝐸0 exp

(

−𝑡2

2𝜏20

)

(1)
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Fig. 1. Schematic illustration of the PTS system. (SC source: super-continuum source,
MZM: Mach–Zehnder modulator, PD: photo-detector).

where 𝐸0 represents the amplitude, 𝜏0 denotes the half-width at 1/e
maximum of the pulse. Its representation in frequency domain is as

𝐸1(𝜔) = 𝐸0(2𝜋𝜏20 )
1∕2 exp

(

−𝜔2𝜏20
2

)

(2)

where 𝜔 denotes the angular frequency deviation from the optical
carrier angular frequency.

After propagating through the first spool of fiber, the electric field
becomes

𝐸2(𝜔) = 𝐸1(𝜔) exp
(

𝑗𝐿1𝛽2𝜔2

2
+

𝑗𝐿1𝛽3𝜔3

6

)

(3)

where 𝐿1 is the length of the first spool of fiber and 𝛽2, 𝛽3 are the second-
order and the third-order dispersion coefficient, respectively.

Using a single-arm MZM with half-wave voltage 𝑉𝜋 biased at the
negative quadrature point, after modulation with the sinusoid RF signal
of angular frequency 𝜔𝑅𝐹 , the electric field can be represented as

𝑒3(𝑡) =
𝑒2(𝑡)
2

{

1 + exp
[

−𝑗 𝜋
2
+ 𝑗𝑚 cos(𝜔𝑅𝐹 𝑡)

]}

=
𝑒2(𝑡)
2

[

1 −
+∞
∑

𝑛=−∞
𝑗𝑛+1𝐽𝑛(𝑚) exp(𝑗𝑛𝜔𝑅𝐹 𝑡)

]

(4)

where 𝑒2(𝑡) is the inverse Fourier transform of 𝐸2(𝜔), 𝑚 = 𝜋𝑉𝑅𝐹 /𝑉𝜋 is the
modulation index of the MZM and 𝐽𝑛(⋅) denotes the first kind of Bessel
function of order n.

After propagating through the second spool of fiber, the electric field
in frequency domain becomes

𝐸4(𝜔) = 𝐸3(𝜔)exp
(

𝑗𝐿2𝛽2𝜔2

2
+

𝑗𝐿2𝛽3𝜔3

6

)

= 𝐸𝑒𝑛𝑣(𝜔) ∗

{

2𝜋𝛿(𝜔) −
+∞
∑

𝑛=−∞
𝑗𝑛+1𝐽𝑛(𝑚)

× exp
[

𝑗𝑛2
(

𝛷̈ +
𝛽3𝐿2
2𝑀

𝜔𝜔2
𝑅𝐹

)

− 𝑗𝑛3𝛷⃛
]

× 2𝜋𝛿
(

𝜔 −
𝑛𝜔𝑅𝐹
𝑀

)

}

(5)

where * represents the convolution operation, 𝛿(⋅) is the Dirac delta
function, 𝐸3(𝜔) is the Fourier transform of 𝑒3(𝑡) , 𝐿2 is the length of
the second spool of fiber, 𝐸𝑒𝑛𝑣(𝜔) is the spectrum of the pulse envelope,
𝑀 =

1−𝑗𝛽2(𝐿1+𝐿2)𝜏−20
1−𝑗𝛽2𝐿1𝜏−20

is a complex value related to the stretch factor and

𝛷̈ =
𝛽2𝐿2(1−𝑗𝛽2𝐿1𝜏−20 )

2[1−𝑗𝛽2(𝐿1+𝐿2)𝜏−20 ]
𝜔2
𝑅𝐹 is the phase shift induced by the second-order

dispersion term [9]. The presence of 3rd-order dispersion brings about
additional phase shift 𝛷⃛ =

𝛽3𝐿2(𝑀+1)𝜔3
𝑅𝐹

6𝑀2 and 𝛽3𝐿2𝜔𝜔2
𝑅𝐹

2𝑀 to the PTS system.

The item 𝛽3𝐿2𝜔𝜔2
𝑅𝐹

2𝑀 is wavelength related and it causes a time-dependent
attenuation via wavelength-to-time mapping [7].

Since the effect of 𝛷⃛ has several orders of magnitude less than that
of 𝛷̈ for practical parameters, the 𝛷 term in Eq. (5) can be ignored. We
can get

𝐸4(𝜔) = 𝐸𝑒𝑛𝑣(𝜔) ∗

[

2𝜋𝛿(𝜔) −
+∞
∑

𝑛=−∞
𝑗𝑛+1𝐽𝑛(𝑚) exp(𝑗𝑛2𝛷̈)

×
(

1 + 𝑗𝑛2
𝛽3𝐿2
2𝑀

𝜔𝜔2
𝑅𝐹

)

× 2𝜋𝛿
(

𝜔 −
𝑛𝜔𝑅𝐹
𝑀

)

]

. (6)

The spectrum of the pulse envelope 𝐸𝑒𝑛𝑣(𝜔) is expressed as

𝐸𝑒𝑛𝑣(𝜔) =
√

2𝜋𝜏0𝐸0 exp

[

−
𝜔2𝜏20
2

+ 𝑗
(3𝛽2 + 𝛽3𝜔)

(

𝐿1 + 𝐿2
)

𝜔2

6

]

. (7)

Ignoring the third-order dispersion term in the envelope and by inverse
Fourier transform, we obtain the pulse envelope

𝑒𝑒𝑛𝑣(𝑡) =
𝜏0𝐸0

√

2𝜏20 − 𝑗2𝛽2
(

𝐿1 + 𝐿2
)

exp

[

− 𝑡2

2𝜏20 − 𝑗2𝛽2
(

𝐿1 + 𝐿2
)

]

. (8)

In general, the PTS system has several kilometers of the first fiber and
sub-picosecond pulse, therefore the dispersion amount of the first fiber
and the pulse width of the pulse satisfy the condition 𝛽2𝐿1 ≫ 𝜏20 .

The time domain expression of the electric field after the second fiber
is achieved through inverse Fourier transform of Eq. (6)

𝑒4(𝑡) = 𝑒𝑒𝑛𝑣(𝑡) ×

{

1 −
+∞
∑

𝑛=−∞
𝑗𝑛+1𝐽𝑛 (𝑚) exp(𝑗𝑛2𝛷̈) exp

(

𝑗
𝑛𝜔𝑅𝐹
𝑀

𝑡
)

×

[

1 +
𝑛2𝛽3𝐿2𝜔2

𝑅𝐹 𝑡
𝑗2𝑀𝛽2(𝐿1 + 𝐿2)

]}

= 𝑒𝑒𝑛𝑣(𝑡) ×

[

1 −
+∞
∑

𝑛=−∞
𝑇𝑛 ⋅ exp

(

𝑗
𝑛𝜔𝑅𝐹
𝑀

𝑡
)

−
𝛽3𝐿2𝜔2

𝑅𝐹 𝑡
𝑗2𝑀𝛽2(𝐿1 + 𝐿2)

×
+∞
∑

𝑛=−∞
𝑛2𝑇𝑛 ⋅ exp

(

𝑗
𝑛𝜔𝑅𝐹
𝑀

𝑡
)

]

(9)

where 𝑇𝑛 = 𝑗𝑛+1𝐽𝑛(𝑚) exp(𝑗𝑛2𝛷̈).
After photo-detecting, the photocurrent is given by

𝑖(𝑡) = 𝑟𝑑 ⋅ 𝑒4(𝑡)𝑒∗4(𝑡) (10)

where 𝑟𝑑 is the responsivity of the PD and the superscript ∗ denotes the
complex conjugate.

For simplifying the expression of 𝑖(𝑡), we use the Graf’s addition
theorem which is given as [13]

𝐽𝑘(𝑅)𝑒𝑗𝑘𝛺 =
+∞
∑

𝑛=−∞
[𝐽𝑛+𝑘(𝑟)𝑒𝑗(𝑛+𝑘)𝜃][𝐽𝑛(𝑟0)𝑒−𝑗𝑛𝜃0 ] (11)

where 𝑅 and 𝛺 denote the amplitude and phase angle of re 𝑗𝜃 − 𝑟0𝑒𝑗𝜃0 ,
respectively.

Combining Eq. (10) with (9), the 𝑘th order harmonic of the pho-
tocurrent can be written as

𝑖𝑘(𝑡) = 𝑟𝑑 ⋅ 𝑖𝑒𝑛𝑣(𝑡) exp
(

𝑗
𝑘𝜔𝑅𝐹
𝑀

𝑡
)

×

{

− 𝑗𝑘+1𝐽𝑘(𝑚) exp(𝑗𝑘2𝛷̈) − 𝑗𝑘−1𝐽−𝑘(𝑚) exp(−𝑗𝑘2𝛷̈)

+ (−1)𝑘𝐽𝑘[2𝑚 sin(𝑘𝛷̈)] +
𝛽3𝐿2𝜔2

𝑅𝐹 𝑡

𝑗2𝑀𝛽2
(

𝐿1 + 𝐿2
)

×

[

𝑘2(𝑇 ∗
−𝑘 − 𝑇𝑘) +

+∞
∑

𝑛=−∞
(2𝑛𝑘 + 𝑘2)𝑇𝑛+𝑘 × 𝑇 ∗

𝑛

]}

(12)

where 𝑖𝑒𝑛𝑣(𝑡) = 𝑒𝑒𝑛𝑣(𝑡)𝑒∗𝑒𝑛𝑣(𝑡) represents the photocurrent envelope.

𝑖𝑒𝑛𝑣(𝑡) =
𝜏20𝐸

2
0

2
√

𝜏40 + 𝛽22
(

𝐿1 + 𝐿2
)2

exp
⎡

⎢

⎢

⎣

− 𝑡2

𝜏20 + 𝛽22
(

𝐿1 + 𝐿2
)2𝜏−20

⎤

⎥

⎥

⎦

. (13)

We derive Eq. (12) without assumption of small signal modulation
and it is suitable for the system with a large modulation index. The
fundamental component is given by

𝑖1(𝑡) = 𝑟𝑑 ⋅ 𝑖𝑒𝑛𝑣(𝑡) exp
(

𝑗
𝜔𝑅𝐹
𝑀

𝑡
)

{

2𝐽1(𝑚) cos(𝛷̈) − 𝐽1[2𝑚 sin(𝛷̈)]

+
𝛽3𝐿2𝜔2

𝑅𝐹 𝑡

𝑗2𝑀𝛽2
(

𝐿1 + 𝐿2
)

[

𝑇 ∗
−1 − 𝑇1 +

+∞
∑

𝑛=−∞
(2𝑛 + 1)𝑇𝑛+1 × 𝑇 ∗

𝑛

]}

.

(14)
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