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a b s t r a c t

We propose a scheme of attacking the pure phase asymmetric optical cryptosystem based on equal modulus
decomposition (EMD) method. The cryptosystem is proven to be vulnerable to our modified iterative algorithm,
even though the applying of phase encoding can reduce the constrain conditions. Furthermore, since that the
improvement of system space asymmetry and key variety is an effective way to further enhance the security,
we have proposed an asymmetric cryptosystem based on modulus decomposition in Fresnel domain. Compared
with traditional asymmetric cryptosystem in Fourier domain, the combination with Fresnel transform cannot
only simplify the system, but also improve the space asymmetry and introduce the geometric parameters
as security keys. Numerical simulations are performed to demonstrate the feasibility and security of the
proposed cryptosystem. In addition, several exemplary schemes for security-enhanced asymmetric cryptosystems
are presented, which may bring profound illumination to many deeper researches in asymmetric optical
cryptosystem.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Optical encryption has attracted extensive interest since the double
random phase encoding (DRPE) method was proposed in 1995 [1].
Recently, many novel methods based on Fourier transform [1–3],
Fresnel transform [4–9], fractional Fourier transform [10–13], and
gyrator transform [14–16] have been further developed for optical
encryption. Most of the above methods belong to the category of
symmetric cryptosystem, in which the decryption keys are the same
as the encryption keys. However, the symmetric cryptosystem will be
insufficiently valid for key distribution and management when multiple
legal users constitute a large network [17]. Asymmetric cryptosystem
using phase-truncated Fourier transforms has been proposed for solving
the problems [18–20], while several studies have demonstrated that it is
vulnerable to some attacks [21–23]. Inspired by PTFT-based asymmetric
cryptosystem, the combination of coherent superposition and modulus
decomposition has been applied into asymmetric cryptosystem [24,25].
It has been found that amplitude-only cryptosystem based on equal
modulus decomposition (EMD) can be easily breached by iterative
transform (IRT) [26], and other attack methods [27]. To enhance
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the security, phase-only EMD method was applied into asymmetric
cryptosystem, of which the robustness against attacks has been verified
by the studies [28].

In this paper, we firstly present a cryptanalysis of the EMD-based
pure phase asymmetric cryptosystem and show that the cryptosys-
tem is vulnerable to our modified IRT. Furthermore, we propose an
asymmetric cryptosystem based on coherent superposition and modulus
decomposition in Fresnel domain, which can enhance the security
and simplify the system structure simultaneously. On the one hand,
the introduction of Fresnel transform cannot only defend the attack
of IRT by getting rid of the constraint of Fourier lens, but also in-
troduce the geometrical parameters (wavelength and axial distances)
as security keys, both of the space asymmetry and key variety are
significantly improved; On the other hand, no lens is required in
our system, which makes the decryption system simple and flexible.
Numerical simulation has been performed to demonstrate the feasibility
and robustness of our proposed system. To further improve the space
asymmetry and key variety, several exemplary schemes are proposed,
which may open up many novel opportunities in asymmetric optical
cryptosystem.
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Fig. 1. Flowchart of the encryption process of EMD-based pure phase cryptosystem.

2. Cryptanalysis of ‘‘EMD-based pure phase asymmetric optical
cryptosystem’’

2.1. Theory of EMD-based pure phase cryptosystem

Fig. 1 shows the flowchart of the EMD-based pure phase cryptosys-
tem proposed by Cai et al. [28]. Compared with traditional asymmetric
cryptosystem [24], the EMD-based pure phase cryptosystem combines
with phase encoding [29,30], in which the original image is prepro-
cessed by phase encoding. The phase-encoded image is mathematically
presented by exp[𝑖 ⋅

√

𝐼𝑘(𝑥)], where
√

𝐼(𝑥) denotes the intensity dis-
tribution of the original image. The rest encryption processes of the
EMD-based pure phase cryptosystem are the same as the traditional
asymmetric cryptosystem, which can be expressed as follows:

𝐼 ′(𝑢) = 𝐴(𝑢) ⋅ exp[𝑖 ⋅ 𝜑(𝑢)] = 𝐹𝑇
[

exp(𝑖 ⋅
√

𝐼(𝑥))
]

, (1)

𝑃1(𝑢) =
𝐴(𝑢)∕2

cos[𝜑(𝑢) − 𝜃(𝑢)]
exp[𝑖 ⋅ 𝜃(𝑢)], (2)

𝑃2(𝑢) =
𝐴(𝑢)∕2

cos[𝜑(𝑢) − 𝜃(𝑢)]
exp[𝑖 ⋅ (2𝜑(𝑢) − 𝜃(𝑢))], (3)

where 𝐹𝑇 [⋅] is Fourier transform, 𝜃(𝑢) is a random uniform distribution
in the interval [0, 2𝜋]. 𝑃1(𝑢) and 𝑃2(𝑢) are ciphertext and private key,
respectively. With 𝑃1(𝑢) and 𝑃2(𝑢) the original image can be retrieved
by the following equation:

𝐼(𝑥) = |

|

|

𝐹𝑇 −1[𝑃1(𝑢) ⋅ 𝑃𝐶𝐹 + 𝑃2(𝑢) ⋅ 𝑃𝐶𝐹 ]||
|

2
, (4)

where 𝐹𝑇 −1[⋅] is an inverse Fourier transform, PCF represents phase
contrast filter, which is used for the realization of Zernike’s phase
contrast. Zernike’s phase contrast is a technique for the visualization
of phase perturbations [31], with which the decryption image can be
recorded by the intensity detectors (like CCD) directly.

2.2. Security analysis and attack process

In Ref. [28], the authors have tested the robustness of the EMD-based
pure phase cryptosystem against IRT proposed by Deng in Ref. [26].
They have indicated that no valuable information about the plaintext
can be recovered, and the EMD-based pure phase cryptosystem can
guarantee high-level security to the attack based on iterative Fourier
transform. We have made some changes of IRT, and performed the
numerical simulation to demonstrate that the EMD-based pure phase
cryptosystem [28] is vulnerable to our modified IRT. Suppose that the
ciphertext 𝑃1(𝑢) is known. The attack algorithm can be described as
below:

(1) Guess the complex value of the private key 𝑃 0
2 (𝑢), and then begin

the following iterative process.
(2) For the 𝑘𝑡ℎ(𝑘 = 0, 1, 2, 3,…) iteration, the private key is 𝑃 𝑘

2 (𝑢),
the decrypted image is acquired as:

𝐼𝑘(𝑥) =
|

|

|

arg
{

𝐹𝑇 −1[𝑃1(𝑢) + 𝑃 0
2 (𝑢)]

}

|

|

|

2
. (5)

(3) Perform Fourier transform of exp[𝑖 ⋅
√

𝐼𝑘(𝑥)]:

𝐼 ′𝑘(𝑢) = 𝐴𝑘(𝑢) ⋅ exp[𝑖 ⋅ 𝜑𝑘(𝑢)] = 𝐹𝑇 ||
|

exp[𝑖 ⋅
√

𝐼𝑘(𝑥)]
|

|

|

2
. (6)

(4) 𝑃 𝑘+1
2 (𝑢) Can be obtained with the constraint of the ciphertext 𝑃1(𝑢):

𝑃 𝑘+1
2 (𝑢) = 𝐼 ′𝑘(𝑢) − 𝑃1(𝑢). (7)

(5) Substitute the amplitude of 𝑃 𝑘+1
2 (𝑢) with 𝑃1(𝑢), while preserving the

phase, as the moduli of the ciphertext and private key are identical in
EMD method.

𝑃 𝑘+1
2 (𝑢) = |

|

𝑃1(𝑢)|| ⋅
[

𝑃 𝑘+1
2 (𝑢)∕ ||

|

𝑃 𝑘+1
2 (𝑢)||

|

]

. (8)

(6) Update 𝑃 𝑘+1
2 (𝑢) with 𝑃1(𝑢) to make further use of the constraint:

𝑃 𝑘+1
2 (𝑢) = 𝑃 𝑘+1

2 (𝑢) + 𝛼 ⋅ conj(𝑃1(𝑢)) max
(

|

|

𝑃1(𝑢)||
2
)

, (9)

where 𝛼 is the adjustment factor, conj(⋅) denotes the complex conjugate
of a function, max(⋅) represents the maximum of a matrix.

(7) Calculate the correlation coefficient (CC) [32] between the
decrypted and original images, as well as the decrypted private key
𝑃 𝑘+1
2 (𝑢) and original private key 𝑃2(𝑢).

CC = cov(𝑓, 𝑓0) ⋅ (𝜎𝑓 , 𝜎𝑓 0
)−1, (10)

where cov(𝑓, 𝑓0) denotes the cross-covariance between 𝑓 and 𝑓0, 𝜎𝑓 is
the standard deviation. The value of ranges from 0 to 1, cov(𝑓, 𝑓0) = 1
means that watermark is extracted perfectly.

(8) Repeat steps (1)–(6) until the number of iterations reaches the
preset threshold value.

2.3. Attack results

Numerical simulation has been performed to verify the feasibility
of the proposed attack algorithm. A gray-scale image and a binary
image are served as the original images, as shown in Fig. 2(a) and
(e), respectively. Fig. 2(b) and (f) show the decrypted results, which
are pretty recognizable. These decrypted images are obtained by 200
times of iteration. The CC values between original and decrypted gray-
scale images, as well as the binary images change are nearly close
to 0.6 and 0.65, respectively. Since that the CC values change with
iterative numbers, the variation curves of the gray-scale images and the
binary images are shown in Fig. 2(c) and (g), respectively. Both the
CC values are about 0.6 after 50 times of iteration. We also calculate
the CC between Original and decrypted private key 𝑃2(𝑢) corresponding
to gray-scale image and binary image displayed in Fig. 2(d) and (h),
respectively. Both of the CC values are more than 0.3 after 50 times
of iteration. The simulation results demonstrate that the EMD-based
pure phase asymmetric cryptosystem is vulnerable to our improved IRT
algorithm.

These attack results are selected from several computational results,
as each entire iterative computational result is different, which is
caused by the decrease of constraints. In the traditional EMD-based
asymmetric cryptosystem, since that the moduli of the private key 𝑃2(𝑢)
and ciphertext 𝑃1(𝑢) are identical according to the EMD theory, there
are two constraints: a ciphertext and a known random phase mask.
With the two constraints, the cryptosystem is extremely vulnerable to
IRT attack, the attack results in Ref. [26] are pretty good. However,
in the EMD-based pure asymmetric cryptosystem, the only constraint
is the ciphertext 𝑃1(𝑢). Even though it requires several computational
running processes to obtain a set of relatively preferable results, it can
still indicate that the EMD-based pure asymmetric cryptosystem can be
breached by our modified IRT method.

3. Asymmetric optical cryptosystem based on modulus decompo-
sition in Fresnel domain

In this section we propose an asymmetric optical cryptosystem com-
bined modulus decomposition with Fresnel transform. The encryption
and decryption processes are shown in Fig. 3(a) and (b), respectively.
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