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a b s t r a c t

We study the transmission of light through a system consisting of an arbitrary number 𝑁 of microtoroidal
resonators coupled to a one-dimensional (1D) waveguide. The transmission 𝑇 through such a system and its full-
width at half-maximum (FWHM) are calculated for various values of 𝑁 and mutual-mode coupling coefficients.
We found that at small mutual-mode coupling, the minimum transmission vanishes exponentially with 𝑁 while
the FWHM is proportional to

√

𝑁 . At big mutual-mode coupling, as the number of resonators increases, the
mode-splitting is reduced. Our findings contribute to better understanding of novel interfaces between quantum
emitters and resonant photonic structures for quantum information processing.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The atom–photon coupling can be greatly enhanced by using a
cavity [1]. The strong coupling between atoms and photons is one
of the main building blocks for quantum-state transfer [2] and leads
to a number of interesting quantum effects [3]. Some examples of
these effects are the vacuum-Rabi oscillation [4,5] and tunable photon
transmission in 1D waveguides [6].

Nevertheless, attaining the strong coupling regime remains tech-
nically challenging due in part to the need for high quality-factor
(Q-factor) cavities [7]. One of the several promising approaches for
fabricating high Q-factor cavities is based on the use of integrated
silicon photonics platforms. These platforms combine the benefits of
intrinsically stable operation, CMOS compatible fabrication and com-
pact footprint. A considerable amount of efforts has been made to
achieve the highest possible enhancement of atom–photon interaction
by optimizing various designs for silicon-based cavities. Photonic crystal
cavities (PCCs) reaching experimental values of Q-factors at the order
103 have been reported [8,9]. In some cases, a Q-factor as high as 105

has also been achieved [10]. Other cavity designs such as microtoroidal
cavities can reach very high values of Q-factor (> 105) [11,12]. They
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are potentially useful for achieving strong coupling between quantum
emitters and cavity modes [13].

The quantum-mechanical description of the coupling between an
emitter and a photonics platform can be studied using an input–output
theory [14]. If there is no quantum emitter and the input light is
coherent, a classical calculations can be employed. These calculations
are typically done with the coupled-mode theory (CMT) [15]. Using the
CMT, the transmission spectrum for one or two microtoroidal resonators
coupled to four input–output ports has been reported [16]. In the
presence of fabrication and dielectric defects for instance, the two
counter-propagating modes inside a ring resonator can couple to each
other [17–19]. When mutual-mode coupling is strong, it has been shown
that the mode splitting occurs in the transmission spectrum 𝑇 [20]. This
mode splitting reduces the coupling efficiency between the cavity modes
and the quantum emitters at the resonant frequency of the cavity.

In this paper, we present a theoretical study of the transmission of
light in a 1D waveguide via a system of 𝑁 microtoroidal resonators
with mutual-mode coupling. There are two main motivations behind
our research. On the one hand, we would like to understand the effects
that an array of 𝑁 microtoroidal resonators has on the mode-splitting.
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Fig. 1. Arrangement of 𝑁 microtoroidal resonators (black circles) along a waveguide
(transparent horizontal line); 𝑎, 𝑏, the two modes of a resonator; 𝐷, distance between two
adjacent resonators; 𝐿, radius of a resonator; 𝑆+∕−𝑖(𝑆′

+∕−𝑖), incoming/outgoing light field
from the left (right).

We discovered that the problem of mode-splitting is reduced for large
𝑁 . We discuss in Section 3 the dependence of the depth and the
width of the transmission spectrum T on 𝑁 . On the other hand, the
research on various systems of microtoroidal resonators has been mainly
experimental or numerical [21–23]. Theoretical work has been mostly
focused on one or two resonators [24,16,20] or with only one mode
present in each ring [25]. A theory for the case of an arbitrary number
of ring resonators that have mutual-mode coupling and that are coupled
to a one-dimensional (1D) waveguide has not been investigated to the
best of our knowledge. A more systematic framework, which simplifies
the study for any number of resonators, is useful for future progress of
the field.

The paper is organized as follows. In Section 2, we describe the
general framework that allow us to study the problem of arbitrary 𝑁
microtoroidal resonators and derive the 𝑁-ring transfer matrix. After
giving the formal expression for the transmission spectrum in Section 3,
we show the numerical results for 𝑇 and discuss its dependence on 𝑁 .
We summarize our results in Section 4 with some remarks regarding the
future directions.

2. Methods

We begin our analysis by considering 𝑁 identical microtoroidal
resonators with radii 𝐿 coupled to a 1D waveguide as depicted in Fig. 1.
Let 𝐷 be the distance between the 𝑖th and (𝑖+1)th rings. For simplicity,
we assume that all the resonators have the same radii and that they
are placed along the waveguide such that the distances between any
two adjacent rings are equal. The case in which 𝐷 varies among the
resonators is discussed in Section 3.

Let us consider the 𝑖th resonator. Let 𝑆+∕−𝑖 and 𝑆′
+∕−𝑖 denote the

incoming/outgoing light field from the left and the right respectively.
The two counter-propagating modes that are denoted 𝑎𝑖 and 𝑏𝑖 oscillate
at frequencies 𝜔𝑎𝑖 and 𝜔𝑏𝑖 , respectively. 𝑎𝑖 and 𝑏𝑖 are coupled to the
waveguide with coupling coefficients 𝜅𝑎𝑖 and 𝜅𝑏𝑖 given below

𝜅𝑎𝑖 =

√

𝜔𝑎𝑖
𝑄𝑖,𝑒

, 𝜅𝑏𝑖 =

√

𝜔𝑏𝑖
𝑄𝑖,𝑒

, (1)

where 𝑄𝑖,𝑒 are the quality factors of the resonators. The coupling of the
resonators to the waveguide gives rise to the decay rates 𝛤𝑎𝑖 ,𝑒 =

𝜔𝑎𝑖
2𝑄𝑖,𝑒

and 𝛤𝑏𝑖 ,𝑒 =
𝜔𝑏𝑖
2𝑄𝑖,𝑒

of the cavity modes. The coupling to other lossy
channels leads to the intrinsic decay of 𝑎𝑖 and 𝑏𝑖 at the rate 𝛤𝑎𝑖 ,𝑖 and
𝛤𝑏𝑖 ,𝑖, respectively. Thus, the total decay rates are

𝛤𝑎𝑖 = 𝛤𝑎𝑖 ,𝑒 + 𝛤𝑎𝑖 ,𝑖, 𝛤𝑏𝑖 = 𝛤𝑏𝑖 ,𝑒 + 𝛤𝑏𝑖 ,𝑖. (2)

We also take into account the coupling between 𝑎𝑖 and 𝑏𝑖. This coupling
is characterized by the coefficients 𝑢𝑖 that are usually taken to be
real [20,26] since the coupling is essentially the energy transfer between
𝑎𝑖 and 𝑏𝑖 without losses. One of the most common reasons for 𝑢𝑖 to
be non-zero is dielectric defects. We further let 𝑢𝑖 to be frequency-
independent as we work in linear optics regime, though the current
framework can be extended to 𝜔-dependent coupling.

2.1. Coupled-mode analysis

In this subsection, we solve for 𝑎𝑖 and 𝑏𝑖 using the CMT [15] in
the frequency domain. On the one hand, this approach gives the same
results as the steady-state solution from the time-domain analysis for
the case in which 𝑁 = 1 and the system is pumped from the left with
𝑆0𝑒𝑖𝜔𝑡. On the other hand, 𝑎𝑖(𝜔) and 𝑏𝑖(𝜔) can be obtained by solving
algebraic equations while 𝑎𝑖(𝑡) and 𝑏𝑖(𝑡) are the Fourier transforms of the
former.

By making Fourier transform the coupled-mode equations for the 𝑖th
resonator [20], the set of equations for 𝑎𝑖 and 𝑏𝑖 in the 𝜔-domain is

⎧

⎪

⎨

⎪

⎩

[

𝑖(𝜔 − 𝜔𝑎𝑖 ) + 𝛤𝑎𝑖

]

𝑎𝑖(𝜔) + 𝑖𝑢𝑖𝑏𝑖(𝜔) = −𝑖𝜅𝑎𝑖𝑆+𝑖(𝜔)
[

𝑖(𝜔 − 𝜔𝑏𝑖 ) + 𝛤𝑏𝑖

]

𝑏𝑖(𝜔) + 𝑖𝑢𝑖𝑎𝑖(𝜔) = −𝑖𝜅𝑏𝑖𝑆
′
+𝑖(𝜔).

(3)

To simplify the subsequent analysis, we employ the following shorthand
notations

𝐴𝑖(𝜔) = 𝑖(𝜔 − 𝜔𝑎𝑖 ) + 𝛤𝑎𝑖 , 𝐵𝑖(𝜔) = 𝑖(𝜔 − 𝜔𝑏𝑖 ) + 𝛤𝑏𝑖 , (4)

𝐷𝑖(𝜔) = 𝐴𝑖(𝜔)𝐵𝑖(𝜔) + 𝑢2𝑖 , (5)

and

𝑡𝐴𝑖
= 1 −

|𝜅𝑏𝑖 |
2𝐴𝑖(𝜔)

𝐷(𝜔)
, 𝑡𝐵𝑖

= 1 −
|𝜅𝑎𝑖 |

2𝐵𝑖(𝜔)
𝐷(𝜔)

. (6)

It is straightforward to show that the solutions 𝑎𝑖(𝜔) and 𝑏𝑖(𝜔) with
respect to 𝑆+𝑖(𝜔) and 𝑆′

+𝑖(𝜔) are

𝑎𝑖(𝜔) =
−𝑖𝜅𝑎𝑖𝐵𝑖(𝜔)

𝐷𝑖(𝜔)
𝑆+𝑖(𝜔) −

𝑢𝑖𝜅𝑏𝑖
𝐷𝑖(𝜔)

𝑆′
+𝑖(𝜔) (7)

𝑏𝑖(𝜔) =
−𝑖𝜅𝑏𝑖𝐴𝑖(𝜔)

𝐷𝑖(𝜔)
𝑆′
+𝑖(𝜔) −

𝑢𝑖𝜅𝑎𝑖
𝐷𝑖(𝜔)

𝑆+𝑖(𝜔). (8)

2.2. Input–output relation

In this subsection, we relate the signal on the left most 𝑆+∕−1 to
the right most 𝑆′

+∕−𝑁 side of a system of an arbitrary number 𝑁 of
resonators. In other words, we want to find the matrix 𝑇 (𝑁) that satisfies
the following condition:
(

𝑆′
−𝑁

𝑆′
+𝑁

)

= 𝑇 (𝑁)
(

𝑆+1
𝑆−1

)

. (9)

We divide the problem of finding 𝑇 (𝑁) into two smaller ones: (i)
obtaining the single-ring transfer matrix 𝑇𝑖 and (ii) determining the
relation of the signal between two adjacent resonators.

(i) Transfer matrix 𝑇𝑖:
The transfer matrix relates the left port of the 𝑖th resonator to its

right port. It is defined as
(

𝑆′
−𝑖

𝑆′
+𝑖

)

= 𝑇𝑖

(

𝑆+𝑖
𝑆−𝑖

)

. (10)

By using 𝑎𝑖(𝜔) and 𝑏𝑖(𝜔) in Eqs. (7) and (8) together with the
following relations between the cavity modes and the signal

⎧

⎪

⎨

⎪

⎩

𝑆′
−𝑖 = 𝑒−𝑖𝛷𝐿

(

𝑆+𝑖 − 𝑖𝜅∗
𝑎𝑖
𝑎𝑖
)

𝑆−𝑖 = 𝑒−𝑖𝛷𝐿
(

𝑆′
+𝑖 − 𝑖𝜅∗

𝑏𝑖
𝑏𝑖
)

,
(11)

the transfer matrix for the 𝑖th ring is given by

𝑇𝑖 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑒−𝑖𝛷𝐿

(

𝑡𝐵𝑖
(𝜔) +

𝑢2𝑖 |𝜅𝑎𝑖 |
2
|𝜅𝑏𝑖 |

2

𝐷𝑖(𝜔)2𝑡𝐴𝑖
(𝜔)

)

−𝑖
𝑢𝑖𝜅∗

𝑏𝑖
𝜅𝑎𝑖

𝐷𝑖(𝜔)𝑡𝐴𝑖
(𝜔)

𝑖
𝑢𝑖𝜅∗

𝑎𝑖
𝜅𝑏𝑖

𝐷𝑖(𝜔)𝑡𝐴𝑖
(𝜔)

𝑒𝑖𝛷𝐿 1
𝑡𝐴𝑖

(𝜔)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (12)

We note that in the above formula, 𝛷𝐿 is just the phase factor
that the light picks up when traveling across the 𝑖th microtoroidal
resonator.
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