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a b s t r a c t

In this study, reflective coherent gradient sensing (CGS) method is introduced to measure large deformations of
Ni–Cr alloy in instrumented indentation. The effects of grating distance, collimation property of incident beam,
camera lens focal length, screen and specimen location are analyzed. The presence or absence of screen and the
camera lens focal length are found out to be the most important factors when measuring large deformations with
CGS method. Moreover, we develop a method to obtain the ‘true’ interferograms by Fourier and inverse Fourier
transformation algorithms. The measuring scale of reflective CGS method for large deformation is obtained.
A criterion is developed to distinguish the boundaries between small and large deformations in measuring
inhomogeneous deformations with reflective CGS method.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Reflective coherent gradient sensing (CGS) is a full-field, real-time,
non-contact and vibration-insensitive optical method [1–3]. It was
developed by H. V. Tippur, et al. for measuring the slopes of reflective
surfaces [4,5]. In recent years, the method was used for measuring crack
tip 𝐾 dominance in static or dynamic fracture tests [6–8], slopes, shapes
and curvatures of reflective surfaces [4,5,9], residual stresses in thin
films [10,11], small deformations [12] and so on.

CGS method is valid for measuring small deformations both in
transmission and reflection mode, on the assumption of that the incident
beam is a collimated beam [5]. However, the interference fringes
can also be observed in the large deformation zone, such as in the
three-dimensional zone around the crack tip. In previous studies, for
geometries where the region outside the three-dimensional zone is 𝐾-
dominant, the fringes provide an accurate value of two-dimensional
stress intensity factor. For geometries where the region inside the three-
dimensional zone is not 𝐾-dominant, William’s expansion is used to
obtain the stress intensity factor. The disagreement in the region of
0 ≤ 𝑟∕ℎ ≤ 0.5 ahead of the crack tip is found out to be caused
by the breakdown of the two-dimensional assumptions close to the
crack tip where three-dimensional deformations are dominant, where
ℎ is the specimen thickness [3,6]. The data outside of the near-tip
three-dimensional region must be appropriately interpreted taking into
account the contribution of higher-order terms to the total stress and
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deformation fields around the crack tip [7]. However, even the higher-
order expansion is not perfectly accurate around the crack tip since
it is from a two-dimensional analysis [6–8]. In addition, because of
nonuniform surface out-of-plane displacement changes, the incident
wave front becomes nonplanar [2].

Therefore, it should be very careful to analyze the near-tip fringes
which represent the large deformations. However, the higher-order
expansions in both geometric and physical interpretations are compli-
cated, and there are situations where even these approaches fail. Simi-
larly, we should pay special attentions to the interferograms reflecting
inhomogeneous deformations, especially to the large deformation zones,
such as in the measurement of 𝐾-dominance during the punch test [13],
the measurement of stress field in the contact problems [14], or the
measurement of stress intensity factor in a stress concentration test [15].
All the experiment results in previous studies show that CGS method is
not valid for accurately measuring large deformations although there
are fringes with high quality in the large deformation zones. In other
words, the interference fringes in large deformation zones are incorrect
for characterizing the specimen deformations.

Therefore, the deformation measuring scale of CGS method should
be investigated. It is necessary to develop a method to obtain the
‘true’ interferogram which can accurately reflect the corresponding
section deformations. Moreover, a universal criterion to distinguish the
boundaries between small and large deformations should be proposed
in measuring inhomogeneous deformations using CGS method.
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Fig. 1. Principle of reflective CGS method.

In this study, the instrumented indentation is used to obtain an inho-
mogeneous deformation field of Ni–Cr alloy. The pile-up phenomenon
around the indentation is observed. The interferograms obtained by
reflective CGS method are directly used to obtain the specimen surface
shape, which is proved incorrect. To analyze the contradiction between
the experiment results and the actual conditions, some interesting
phenomena of interference fringes are observed and discussed by exper-
imental investigation. The effects of grating distance, collimation prop-
erty of incident beams, camera lens focal length, screen and specimen
location are analyzed. As a result, the measuring scale of reflective CGS
method for large deformation is obtained. The method to obtain the
‘true’ interferogram which contains both small and large deformations is
developed. In addition, a criterion to distinguish the boundaries between
small and large deformations is proposed in measuring inhomogeneous
deformations using CGS method.

2. Experiment and phenomena

2.1. The principle of phase-shifted reflective CGS method

Fig. 1 shows the principle of reflective CGS method. The object wave,
reflected from the specimen surface, passes through two Ronchi gratings
𝐺1 and 𝐺2. The grating distance is Δ, and the principle grating direction
is on 𝑦 axis. Light beam A and B represent two incident beams with a
separation distance of 𝜀. 𝐸1 represents the +1 order diffraction beam of A
diffracted from 𝐺1, while 𝐸∗

0 represents the 0 order diffraction beam of B
diffracted from 𝐺1. 𝐸1 and 𝐸∗

0 will converge on 𝐺2 if 𝜀 = Δ ⋅ tan𝜑, where
𝜑 is the grating first order diffraction angle. Each of these diffracted
beams diffract again at 𝐺2. 𝐸∗

0,+1 represents the +1 order diffraction
beam of 𝐸∗

0 diffracted from 𝐺2, while 𝐸1,0 represents the 0 order
diffraction beam of 𝐸1 diffracted from 𝐺2. The subscripts correspond
to diffraction orders at two gratings. The intensities and directions of
𝐸∗
0,+1 and 𝐸1,0 are the same and as a result, there are interference fringes

of 𝐸∗
0,+1 and 𝐸1,0 on the right side of 𝐺2. The wavefronts 𝐸∗

0,±1 and
𝐸±1,0 contribute to the ±1 diffraction spot on the focal plane, while
the wavefronts 𝐸0,0 and 𝐸∗

1,−1 contribute to the zero order. All the
diffraction beams and their interference fringes can be observed on the
right side of 𝐺2. Therefore, a filtering lens and aperture are implemented
to filtering out all but +1 diffraction order, which is usually used in CGS
method [15].

In this study, the grating pitch is 𝑝 = 25 μm, and the laser wavelength
is 𝜆 = 532 nm, so the grating first order diffraction angle is 𝜑 =
sin−1𝜆∕𝑝 ≈ 𝜆∕𝑝 = 1.22◦. The commonly used grating distance is 20–
50 mm. The two beam light path difference between 𝐺1 and 𝐺2 is
ignored as shown in Eq. (1):
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Therefore, the interference fringes reflect the light path difference
between A and B on the left side of 𝐺1, which only comes from the
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Fig. 2. Specimen with an indentation in the center: (a) observed by regular digital camera;
(b) observed by digital microscope. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

specimen surface. The fringes represent the out-of-plane displacement
gradient contours of reflective surfaces as shown in Eq. (2):

𝜕𝑤
𝜕𝑦

=
𝑁𝑝
2Δ

(2)

where 𝑤 is the out-of-plane displacement, 𝑁 is the fringe order [1,2].
In addition, the grating principle direction is on 𝑦 axis in Eq. (2). When
the grating principle direction is on 𝑥 axis, the surface slopes on 𝑥 axis
can be obtained, which is similar to Eq. (2).

In the reflection mode, it should be noticed that the object wave
is perpendicular to the optical axis, or the incident beam should be
a collimated beam at least [5]. Otherwise the reflection angle varies
at different specimen locations and the fringes appear in the wrong
places. In other words, there might be interference fringes in some
zones although there are no deformations. The fringes can reflect the
deformations of other zones if the deformations are large enough to
produce a decollimated beam. As a result, the interference fringes cannot
characterize the corresponding location deformations when measuring
large deformations, which might be the reason of the contradiction in
Refs. [3,6–8].

In previous work, a phase shifting technology (Plane-parallel plate
rotating method) was developed and proved to be effective for CGS
method [10]. The phase shifting can be introduced by rotating a plane-
parallel plate between two gratings. The governing equation of this
modified CGS method is:

𝜕𝑤
𝜕𝑦

=
𝑝
2Δ

[𝑁 −𝐾 (𝛼, 𝑛, 𝑑,Δ, 𝑝, 𝜆)] (3)

where 𝐾 (𝛼, 𝑛, 𝑑,Δ, 𝑝, 𝜆) is related to the rotation angle 𝛼, plate refractive
index 𝑛, plate thickness 𝑑, grating distance Δ, grating pitch 𝑝 and laser
wavelength 𝜆. The 𝐾 (𝛼, 𝑛, 𝑑,Δ, 𝑝, 𝜆) factor can be solved by numerical
method as introduced in Ref. [10]. In addition, the parameters of
the phase shifter are the same with those in Ref. [10]. In this study,
the phase-shifted reflective CGS method is used for its convenience of
automatic fringe treatment and high accuracy.
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