
Optics Communications 402 (2017) 140–146

Contents lists available at ScienceDirect

Optics Communications

journal homepage: www.elsevier.com/locate/optcom

Electro-optic intensity chaotic system with an extra optical feedback
Hanping Hu a,b, Saiying Shi a,*, Feilong Xie a

a School of Automation, Huazhong University of Science and Technology, Wuhan, 430074, China
b State Key Laboratory of Cryptology, P.O. Box 5159, Beijing, 100878, China

a r t i c l e i n f o

Keywords:
Electro-optic delay oscillator
Optical feedback
Chaotic synchronization
Secure communication

a b s t r a c t

Electro-optic (EO) delay oscillators have been widely investigated for secure optical communication. To improve
complexity and security, an EO intensity chaotic system with an extra optical feedback is proposed. Simulation
results show that the proposed system can improve complexity. Moreover, it can effectively suppress the time
delay analysis, and the suppression can be enhanced by increasing the optical feedback strength of our system.
In addition, synchronization of the communication system in a chaotic modulation encryption scheme based on
the proposed system is discussed.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Information security remains a challenging subject for optical
communication. Traditional software encryption techniques provide
a certain degree of security, but their slow encryption rate fails to
keep pace with the development of optical communication. Chaotic
signal has high robustness and high privacy in data transmission. As
a result, chaotic secure communication, a hardware encryption method
for optical communication, has attracted many researchers’ attention in
the past two decades. It is a high-speed method compared with software
encryption techniques, but its confidentiality remains to be improved
[1]. Much research focuses on enhancing chaos and improving the
security of optical chaotic systems since Argyris et al. [2] applied the
optical chaotic systems to secure data transmission over 120 km of a
commercial optical network.

More recently, optical nonlinear delayed feedback systems
(ONDFSs), also known as Ikeda-based electro-optic (EO) systems, have
been widely reported because of their hyperchaotic characteristics [3,4].
Such systems are typically constructed with EO delay devices [5–
10]. EO setups have two advantages compared with electronic setups
such as Lorenz or Chua’s systems. First, they can generate chaotic
optical carriers at rates above 10 Gb/s [11] for high-speed optical
communication. Second, their high complexity has shown promise at
more efficient encryption [9,11]. The complexity of ONDFSs depends
on the feedback strength and extrema number of the nonlinear feedback
function [3]. Moreover, the time delay in the feedback loop results
in an infinite-dimensional phase space, which can lead to very high-
dimensional chaotic dynamics. However, increasing the dimension is
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not necessary for security [12]. The ability of the eavesdropper to reveal
the fundamental parameters of the system is of utmost importance.
Therefore, delay recovery problems need to be addressed [13,14].

In a general case, a constant wave (CW) laser is used, and chaos
merely relies on the nonlinearities of external component, namely, the
Mach–Zehnder (MZ) modulator. In this respect, some schemes such
as modulating the laser or changing the constant laser with a chaotic
laser have been proposed [15–17]. [15] and [16] take advantage of the
internal nonlinearities of the laser, whereas [17] has utilized the optical
nonlinearities of an exogenic EO delay oscillator. Specifically, [15] uses
the chaotic output to modulate the laser, which is referred to as a
feedback method. They all achieved dynamic variations of feedback
strength by converting the constant laser output into a variable output.
Besides, multiple feedback [18], feedback coupling [19–21], or a hybrid
method [22] has been suggested successively. Furthermore, modulating
the time delay digitally [23] and multiple time delay strategy [24] are
also demonstrated to be feasible schemes.

Hence, in this study, we proposed an optical chaotic system with
an extra optical feedback based on the electro-optic intensity chaotic
system (EOICS) [25]. The introduction of the optical feedback method
reveals the complex variation of EO feedback strength, and a new delay
is added. Without the modulation of the CW laser, the proposed system
can enhance chaos by making use of the external nonlinearities again
and will keep a concise mathematical expression. No additional costly
component is needed, but it would be a highly efficient and feasible
scheme.
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Fig. 1. Setup of EOICS with extra optical feedback, LD: laser diode, MZ: Mach–Zehnder
modulator, DL: delay line, OC: optical coupler, PD: photodiode, RF: radio frequency driver.

2. System and mathematical model

Fig. 1 illustrates the schematic diagram of the proposed optical
chaotic system. The proposed system differs from the system depicted
in [5]. In the proposed system, we add an optical fiber to lead the output
of the MZ modulator to feed back to its optical input with another delay
𝑇𝐷2 in the loop. An optical isolator (OI) is used to ensure unidirectional
optical feedback. As a result, it can be regarded as a delayed chaotic
system with a variable parameter, which implies the improvement in
complexity and security compared with [5].

As shown in Fig. 1, the light from the output of the MZ modulator is
coupled with the light from the laser diode (LD) of power 𝑃0 by a 2 × 2
fiber coupler and then modulated by the MZ modulator. The electrical
input of MZ modulator is the radio-frequency (RF) driver’s output
voltage 𝑉 (𝑡) and biased with a constant voltage 𝑉𝐵 . The MZ output is
written as 𝑃𝑖𝑛(𝑡) ⋅ cos2[

𝜋𝑉 (𝑡)
2𝑉𝜋𝑅𝐹

+ 𝜋𝑉𝐵
2𝑉𝜋𝐷𝐶

], where 𝑉𝜋𝑅𝐹 and 𝑉𝜋𝐷𝐶 indicate the
RF half-wave voltage and bias electrode half-wave voltage, respectively,
considering a variable optical input 𝑃𝑖𝑛(𝑡). The output light is split by
another 2 × 2 fiber coupler into two beams, which are injected into the
electro-optical feedback loop and optical feedback loop respectively.
The electro-optical feedback loop contains an optical fiber delay line
of delay time 𝑇𝐷1, a photodiode (PD) with responsivity 𝑠 to detect and
convert the optical signal into an electrical signal, and an RF driver
with gain 𝑔 and a band-pass filter with low cutoff frequency 𝑓𝐿 and
high cutoff frequency 𝑓𝐻 . The output of the RF driver is the electrical
voltage 𝑉 (𝑡) for the Mach–Zehnder electrode. Besides, the electro-optical
feedback loop considers the overall attenuation 𝐴, whereas the optical
feedback loop considers an attenuation 𝐾. We consider 𝑥(𝑡) = 𝜋𝑉 (𝑡)

2𝑉𝜋𝑅𝐹
.

Then, the system’s dynamics can be modeled by the following delay
integro-differential equation:

⎧

⎪

⎨

⎪

⎩

𝑥(𝑡) + 𝜎 𝑑
𝑑𝑡

𝑥(𝑡) + 1
𝜃 ∫

𝑡

𝑡0
𝑥(𝑠)𝑑𝑠 = 𝑃𝑖𝑛(𝑡 − 𝑇𝐷1) ⋅ cos2[𝑥(𝑡 − 𝑇𝐷1) + 𝜙] ⋅ 𝐺

𝑃0 +𝐾 ⋅ 𝑃𝑖𝑛(𝑡 − 𝑇𝐷2) ⋅ cos2[𝑥(𝑡 − 𝑇𝐷2) + 𝜙] = 𝑃𝑖𝑛(𝑡)
,

(1)

where 𝐺 = 𝜋𝐴𝑠𝑔
2𝑉𝜋𝑅𝐹

, 𝜎 = 1
2𝜋𝑓𝐻

, 𝜃 = 1
2𝜋𝑓𝐿

, 𝜙 = 𝜋𝑉𝐵
2𝑉𝜋𝐷𝐶

.
For numerical simulations, we introduce dimensionless time 𝑡

𝜎 ,
where the time has been scaled with 𝜎. Then, Eq. (1) can be rewritten
as follows:
⎧

⎪

⎨

⎪

⎩

𝑥(𝑡) + 𝑑
𝑑𝑡

𝑥(𝑡) + 𝜀∫

𝑡

𝑡0
𝑥(𝑠)𝑑𝑠 = 𝑃𝑖𝑛(𝑡 − 𝑇1) ⋅ cos2[𝑥(𝑡 − 𝑇1) + 𝜙] ⋅ 𝐺

𝑃0 +𝐾 ⋅ 𝑃𝑖𝑛(𝑡 − 𝑇2) ⋅ cos2[𝑥(𝑡 − 𝑇2) + 𝜙] = 𝑃𝑖𝑛(𝑡)
, (2)

where 𝜀 = 𝜎
𝜃 , 𝑇1 =

𝑇𝐷1
𝜎 , 𝑇2 =

𝑇𝐷2
𝜎 .

We set the parameters in Eq. (1) at values compatible with those of
the experiential setup according to [5], that is, 𝜎 = 25 ps, 𝑇𝐷1 = 30
ns, 𝑇𝐷2 = 25 ns, 𝜃 = 5μs, and 𝛷 = −𝜋∕4 for the symmetric case [26].
Accordingly, the corresponding parameters in Eq. (2) are 𝜀 = 5 ∗ 10−6,

Fig. 2. Bifurcation diagram of the EOICS with extra optical feedback.

𝑇1 = 1200, 𝑇2 = 1000, and 𝛷 is constant. 𝐺 is constrained by the device,
and 𝑃0 is typically 5 mW. In the simulations, we keep 𝐺 = 1000 and
𝐾 = 0.8 for comparison. The following conclusions are obtained from
the numerical simulations.

3. Complexity and security

The simulations of Eq. (2) were conducted with a fourth-order
Runge–Kutta algorithm, and the time step used for the numerical
integration is 5 ps. The results are obtained by integrating over a time
of 35 μs which is seven times longer than the slowest time scale 𝜃 of the
model. The dynamic optical input 𝑃𝑖𝑛(𝑡) is equal to the laser’s power
𝑃0 without the optical feedback loop. Thus, the system in Eq. (1) is
similar to that in [3], which is often referred to as nonlinear delay
differential equations. 𝑃0 ∗ 𝐺 is usually considered the bifurcation
parameter as it represents the strength of the nonlinear function, which
plays an important role in the chaotic behavior with high complexity.
The bifurcation diagram of 𝑥(𝑡) versus 𝑃0 is plotted in Fig. 2. The diagram
shows that a broader parameter range is obtained because it is chaotic
in the range of 𝑃0 = 0.55 − 5 mW.

To give insight into the enhancement of chaos, the largest Lya-
punov exponents [27] (LLEs) have been calculated for different 𝑃0,
and a comparison with the system without extra optical feedback is
depicted in Fig. 3(a). As the figure displays, it dramatically rises to
a relatively large positive value at 𝑃0 = 0.55 in the proposed system,
which is corresponding to the burst in the bifurcation diagram and
implies the generation of chaos. By contrast, the general EOICS starts
to insignificantly increase at 𝑃0 = 1.0 and speeds up at 𝑃0 = 2.4. The
dynamic behavior such as Hopf bifurcation [5,26,28] may exist when
the LLE holds a low positive value. The parameter 𝐾 is introduced
in Fig. 3(b). The strong optical feedback strength contributes to the
enhanced chaotic behavior as it obtains obviously larger LLE. However,
the optical feedback strength cannot be too large; otherwise, the output
becomes unstable. A reasonable explanation is that the large feedback
strength could cause a large perturbation in the input, thus producing
unstable dynamics. That is to say, parameter 𝐾 must be kept in a certain
range.

Permutation entropy (PE) is also an effective measure of complex-
ity. It is calculated completely according to the output data. But the
calculation of LEs in this paper must know the system equations in
advance. Fortunately, it is easily implemented and can be computed
much faster. Hence, we compare the PE of EOICSs with and without
extra optical feedback in Fig. 4. As suggested in [29], we select the
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