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a b s t r a c t

We demonstrate that the propagation of truncated, non-diffracting and accelerating beams can be accurately
calculated by using a method that represents these beams by a finite superposition of Gaussian wavelets to
be in turn propagated by means of the Fresnel diffraction integral. We support our proposal by demonstrating
analytically that the Fresnel diffraction integral describes properly the non-diffracting and accelerating char-
acteristics of non-truncated beams under propagation. We present numerical results of the propagation of this
type of truncated beams and we propose analytical equations of a truncated accelerating beam with improved
performance.

© 2017 Elsevier B.V. All rights reserved.

0. Introduction

The non-diffracting zero-order Bessel beam of the first kind was
analytically obtained in [1] as a solution to the Helmholtz differential
equation in cylindrical coordinates with radial symmetry. Its properties
under propagation have been studied in [2–4]. Non-diffracting proper-
ties were then extended to the nth-order Bessel beam of the first kind
in [5] and compared with other non-diffracting beams. Propagation
equations obtained as solutions of the Helmholtz differential equation
were obtained for the special case of non-diffracting beams in [6,7].
Additionally, by considering the Helmholtz equation in a paraxial
approximation, a Schrödinger-type solution consisting of an Airy beam
which is referred to as an accelerating beam since it travels in bending
trajectories and being also non-diffracting has been studied in [8,9].
Fresnel diffraction propagation of Airy beams has been investigated
in [10] by calculating their propagation using the Cornu spiral.

A non-diffracting beam physically realizable is spatially limited. It
can be represented by an ideal beam, which is truncated by means of an
appropriate aperture. Its non-diffracting range decreases and analytical
equations in an exact (closed) form to calculate its propagation cannot
be obtained in general, hence, requiring numerical methods. An efficient
numerical method to calculate the propagation of complex fields using
a finite superposition of Gaussian wavelets (FSGW) has been reported
in [11,12]. However, before using this method, it must be determined
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whether its applicability can be extended for calculating the propaga-
tion of non-diffracting and accelerating beams. For this, the following
aspects must be taking into consideration. First, Gaussian beams widen
upon propagation making it questionable whether such a superposition
is appropriate for propagating non-diffracting beams. Second, as the
Fresnel diffraction integral is not an exact analytical solution to the
Helmholtz differential equation but only a paraxial approximation, it
must be found whether this integral preserves non-diffracting beams
under propagation and, furthermore, whether this integral is useful for
accurately calculating the bending trajectory of accelerating beams.

The above apparent limitations are overcome as follows. First,
relying on the linearity of the Fresnel diffraction integral, if the beam
to be propagated is properly represented by a FSGW, then, the linearity
of this integral implies that the propagated field should also be accurate
regardless of the widening of the Gaussian wavelets in the superposition.
The second apparent limitation is overcome by analytically demonstrat-
ing that the Fresnel diffraction integral, in fact, preserves accurately the
non-diffracting and accelerating properties of the beams analyzed in this
report.

In the following sections, we demonstrate that the Fresnel diffraction
integral preserves non-diffracting, nth-order Bessel beams of the first
kind as well as accelerating Airy beams when both of these extend
spatially without any truncation. Under this condition, exact analytical
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Fig. 1. Propagation of a field from an initial plane with coordinates (𝑥, 𝑦) up to
an observation plane with coordinates

(

𝑥𝐹 , 𝑦𝐹
)

. The planes are parallel to each other
and separated a distance 𝑧. The amplitude distributions are Ψ (𝑥, 𝑦) and Ψ𝐹

(

𝑥𝐹 , 𝑦𝐹
)

respectively.

equations of propagation can be obtained. Based upon these results,
we now extend the applicability of our FGSW method to propagate
truncated beams for which analytical equations cannot be expressed in
closed form. We present numerical examples performed by means of the
FSGW method. Finally, motivated on the Airy beam, we propose a new
truncated beam that in addition of showing comparable accelerating
properties exhibits improved performance.

1. Analytical description

Fig. 1 illustrates the physical situation.
At an initial plane with coordinates (𝑥, 𝑦), a field with amplitude

distribution Ψ (𝑥, 𝑦) propagates towards an observation plane with
coordinates

(

𝑥𝐹 , 𝑦𝐹
)

located at a distance 𝑧 and being parallel to the
initial plane. At the initial plane the spatial coordinates (𝑥, 𝑦) will be
represented in cylindrical form as,

𝑥 = 𝜌 cos(𝜑); 𝑦 = 𝜌 sin(𝜑), (1)

analogously at the observation plane,

𝑥𝐹 = 𝜌𝐹 cos(𝜑𝐹 ); 𝑦𝐹 = 𝜌𝐹 sin(𝜑𝐹 ). (2)

At the observation plane the amplitude distribution Ψ𝐹 (𝑥𝐹 , 𝑦𝐹 ) is
calculated by means of the Fresnel diffraction integral [13],

Ψ𝐹 (𝑥𝐹 , 𝑦𝐹 ) =
exp

(

𝑖 2𝜋𝜆 𝑧
)

𝑖𝜆𝑧 ∫ ∞
−∞ ∫ ∞

−∞ Ψ(𝑥, 𝑦) exp
{

𝑖 𝜋
𝜆𝑧

[

(

𝑥 − 𝑥𝐹
)2

+
(

𝑦 − 𝑦𝐹
)2
]}

𝑑𝑥 𝑑𝑦.
(3)

In Eq. (3) 𝜆 is the wavelength of the field.
In the following subsection Eqs. (1)–(3) will be applied to calculate

the propagation of non-truncated beams.

1.1. Propagation of non-truncated, non-diffracting, nth-order Bessel beams
of the first kind

In this subsection, we analytically demonstrate that the Fresnel
diffraction integral preserves non-truncated, non-diffracting nth-order
Bessel beams of the first kind by writing the amplitude distribution at
the initial plane as Ψ (𝜌, 𝜑) = 𝐽𝑛(𝑎𝜌) exp(𝑖𝑛𝜑). For this case the Fresnel
diffraction integral (3) expressed in cylindrical coordinates reads,

Ψ𝐹
(

𝜌𝐹
)

= 2𝜋(𝑖)𝑛
exp

(

𝑖 2𝜋𝜆 𝑧
)

𝑖𝜆𝑧
exp

(

𝑖 𝜋
𝜆𝑧

𝜌2𝐹
)

exp
(

𝑖𝑛 𝜑𝐹
)

×∫

∞

0
exp

(

𝑖 𝜋
𝜆𝑧

𝜌2
)

𝐽𝑛 (𝑎𝜌) 𝐽𝑛
(

−2𝜋
𝜆𝑧

𝜌𝐹 𝜌
)

𝜌 𝑑𝜌.
(4)

The integral in Eq. (4) can be calculated using Weber’s integral [14–
16] expressed as,

∫

∞

0
exp

(

−𝑠2𝑡2
)

𝐽𝜈(𝑎𝑡)𝐽𝜈(𝑏𝑡)𝑡 𝑑𝑡 =
1
2𝑠2

exp
(

− 𝑎2 + 𝑏2

4𝑠2

)

𝑖−𝜈𝐽𝜈
(

𝑖 𝑎𝑏
2𝑠2

)

. (5)

Eq. (5) allows to write Eq. (4) as,

Ψ𝐹
(

𝜌𝐹
)

= exp
(

𝑖2𝜋
𝜆
𝑧
)

exp
(

−𝑖 𝜆𝑎
2

4𝜋
𝑧
)

𝐽𝑛
(

𝑎𝜌𝐹
)

exp
(

𝑖𝑛 𝜑𝐹
)

. (6)

Eq. (6) demonstrates that the Fresnel diffraction integral preserves
non-truncated, non-diffracting nth-order Bessel beams of the first kind
and additionally provides their appropriate phase terms as a function of
distance of propagation.

1.2. Schrödinger-type beams

To establish the Schrödinger-type differential equation as a paraxial
approximation of the Helmholtz differential, we consider the two-
dimensional Helmholtz equation as,

𝜕2Ψ (𝑥, 𝑧)
𝜕𝑥2

+
𝜕2Ψ (𝑥, 𝑧)

𝜕𝑧2
+ 𝑘20Ψ (𝑥, 𝑧) = 0. (7)

In Eq. (7) 𝑘0 = 2𝜋∕𝜆, as usual.
Now a solution of the form, Ψ (𝑥, 𝑧) = Ψ𝐴 (𝑥, 𝑧) exp

(

𝑖𝑘0𝑧
)

is proposed
and substituted in Eq. (7), giving,

𝜕2Ψ𝐴 (𝑥, 𝑧)
𝜕𝑥2

+
𝜕2Ψ𝐴 (𝑥, 𝑧)

𝜕𝑧2
+ 𝑖2𝑘0

𝜕Ψ𝐴 (𝑥, 𝑧)
𝜕𝑧

= 0. (8)

For the paraxial approximation, the second partial derivative with
respect to 𝑧 is neglected in Eq. (8). Thus,

𝜕2Ψ𝐴 (𝑥, 𝑧)
𝜕𝑥2

+ 𝑖2𝑘0
𝜕Ψ𝐴 (𝑥, 𝑧)

𝜕𝑧
= 0. (9)

Eq. (9) is the well-known analytical expression for the paraxial
approximation of the two-dimensional Helmholtz differential equation.

We will now demonstrate that, aside from the phase term exp
(

𝑖𝑘0𝑧
)

,
the Fresnel diffraction integral is an exact solution of the Schrödinger-
type differential equation (9). For this, we write the Fourier transform
of Ψ𝐴 (𝑥, 𝑧) and its corresponding inverse transform Ω𝐴 (𝑢, 𝑧) as,

Ω𝐴 (𝑢, 𝑧) = ∫

∞

−∞
Ψ𝐴 (𝑥, 𝑧) exp (−𝑖2𝜋𝑢𝑥) 𝑑𝑥;

Ψ𝐴 (𝑥, 𝑧) = ∫

∞

−∞
Ω𝐴 (𝑢, 𝑧) exp (𝑖2𝜋𝑢𝑥) 𝑑𝑢. (10)

In Eq. (10) 𝑢 corresponds to the spatial frequency of 𝑥.
Eq. (10) allows to rewrite (9) as,

− 4𝜋2𝑢2Ω𝐴 (𝑢, 𝑧) + 𝑖2𝑘0
𝜕Ω𝐴 (𝑢, 𝑧)

𝜕𝑧
= 0. (11)

Eq. (11) is solved straightforward as,

Ω𝐴 (𝑢, 𝑧) = 𝐴(𝑢) exp
(

−𝑖𝜋𝜆𝑧𝑢2
)

. (12)

In Eq. (12) when 𝑧 = 0 gives, 𝐴(𝑢) = Ω𝐴(𝑢, 0). Thus, (12) can be
written as,

Ω𝐴(𝑢, 𝑧) = Ω𝐴(𝑢, 0) exp
(

−𝑖𝜋𝜆𝑧𝑢2
)

. (13)

From Eq. (13) the transfer function 𝑇𝐴(𝑢) of the free space propaga-
tion can be recognized as,

𝑇𝐴(𝑢) = exp
(

−𝑖𝜋𝜆𝑧𝑢2
)

. (14)

Calculating the inverse Fourier transform of (14) gives the impulse
response as,

𝐼𝐴(𝑥, 𝑧) =
1

√

𝑖𝜆𝑧
exp

(

𝑖 𝜋
𝜆𝑧

𝑥2
)

. (15)
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