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Phase-shifting (PS) is a well-known technique for phase retrieval in interferometry, with applications in
deflectometry and 3D-profiling, which requires a series of intensity measurements with certain phase-steps.
Usually the phase-steps are evenly spaced, and its knowledge is crucial for the phase retrieval. In this work we
present a method to extract the phase-step between consecutive interferograms. We test the proposed technique
with images corrupted by additive noise. The results were compared with other known methods. We also present

experimental results showing the performance of the method when spatial filters are applied to the interferograms
and the effect that they have on their relative phase-steps.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Phase-shifting (PS) is a powerful technique for phase retrieval in in-
terferometry (see e.g. [1-4] and the references therein), which presents
a high accuracy and has been widely used in wavefront reconstruction,
optical element testing, and refractive index measurement. Also, it has
been used in deflectometry and 3D-profiling by fringe projection [5].
In general, it requires a series of intensity measurements 7, (i, j) (were
k =1,2,...,K) with known phase-shifts 5,

I (i, j) = aG, j) + b(i, j) cos (G, j) + 8 ) » €8]

where (i,j) are spatial coordinates (pixels), and ¢(i,j) is the phase
introduced by the test object. The functions b(i, j) and a(i, j) are the
modulation and the mean intensity of the interferograms, respectively.
Usually the phase-shifts are evenly spaced, and thus they can be written
as 6, = ka, with a being a constant, so

1, (i, j) = a(i, j) + b(i, j) cos (9(i, j) + ka) . (2)

It is possible to classify the PS algorithms into two groups, the
fixed coefficient PS algorithms and the tunable PS algorithms. The first
category includes algorithms with a given (constant) phase-step such
as the four step Bruning algorithm which requires « = #/2 [1,6].
On the other hand tunable PS algorithms are valid for a continuous
range of phase-step values. Hariharan five step algorithm [1,7], Carré
algorithm [8] and the Stoilov and Dragostinov [9] algorithms are
examples of this kind of algorithms.
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In order to apply a tunable PS algorithm it is important to know the
phase-step (a), but in practice it is known only approximately, e.g. due
to miscalibration of the phase shifter. [For example, PZT is the most
popular phase stepper; unfortunately, its response presents hysteresis
and it is sensitive to temperature and aging. Moreover, the phase-step
miscalibration can be due to the electronic signal driving the phase
stepper device.] Thus, the actual phase-step values could be deviated
from the theoretical ones, which leads to phase reconstruction errors,
as discussed in [10-12] and the references therein. Therefore, a precise
knowledge of the phase-step is essential for a reliable phase retrieval.

Additionally, the intensity measurements are usually corrupted by
noise, so that instead of Eq. (2) one has

1 (i, j) = a(i, j) + b(i, j) cos ($(i, j) + ka) + ny (i, ), 3

where for simplicity we are assuming that the noise (n,(i, j)) is additive.
Thus, the problem of retrieving the phase-step value from the intensity
measurements is far away to be from a trivial problem, and this
continues to be an area of active research.

In interferometry is common to assume that n, (i, j) is additive white
Gaussian noise with a mean of zero and variance ¢2. This under the
assumption that we are dealing with smooth-surface interferometric
metrology, where the main source of noise is additive electronic noise.
According with Servin et al. [13], in interferometry one deal with two
main kind of noise: the first one is the additive noise, where the acquired
irradiance is corrupted by additive uncorrelated noise and it arises in
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Fig. 1. Noiseless interferograms I, (i, j) with k = 1,2, ..., 6 respectively.

optical metrology of smooth surfaces such as mirrors where most of
the noise comes from ambient and the electronic equipment used. The
second one is the phase (speckle) noise, which normally arises in TV
speckle metrology or ESPI. Both kind of noise are present in the acquired
interferograms containing a mixture of these two extreme cases. Also,
according with Servin et al. [13], when dealing with smooth-surface
interferometric metrology the main source of noise is additive electronic
noise.

Over the last decades, several methods for phase-step retrieval
in presence of noise have been proposed. In general, the phase-step
retrieving methods reported in the literature can be classified into two
categories: iterative and noniterative. The iteratives (see e.g. [14-16]
and the references therein) are greatly time-consuming since a proce-
dure has to be repeated many times to achieve acceptable accuracy.
Also, the number of iterations depends on the guessed initial phase-
steps.

Several noniterative approaches have been proposed in the literature
(see e.g. [17-19]). For example, Farrell and Player [17] suggested
a Lissajous elliptic fitting algorithm. Its main drawback is that the
calculation of the phase-steps is easily affected by noise, modulation
of the background intensity, etc.

Recently, other noniterative algorithms less sensitive to noise have
been proposed. For example, Xu et al. [18] proposed a Euclidean matrix
norm (EMN) algorithm to extract the unknown phase-steps from three
interferograms. The method assumes that the interferograms contain
more than one fringe and that certain inequality holds (see Eq. (4)
of [18]). Under similar assumptions, Guo and Zhang [19] suggested
a simple algorithm that estimates phase-steps from variances of fringe
pattern differences. However, the accuracy in measurement of phase-
steps obtained with this algorithm (even under noise free condition)
depends on the number of fringes in the interferograms.

Additionally, there are many other algorithms proposed in the litera-
ture for phase-step retrieval that assume certain homogeneity (or certain
previous knowledge) of the background intensity or/and modulation of
the interferograms (see e.g. [20,21]).

In this work we present a new noniterative method for estimating
the phase-step (a) under the assumption that the phase-shifts between
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interferograms are evenly spaced. Unlike most algorithms published in
the literature, the proposed procedure does not assume any constraints
over the mean intensity or modulation of the interferograms. The
method is easy to implement and it works well even with very small
signal-to-noise ratios (SN R), e.g. SNR 0.1 or even smaller. The
details of the method will be discussed in Sections 2-4. Simulations
and comparison with other methods are presented in Sections 5 and
6. Section 7 shows experimental results.

~
~

2. Phase-step extraction algorithm

Defining 1,(i, j) = ¢(i, j) + ka, from Eq. (2) it results

LG, j) — a(i, j) = b, j) cos (1,3, ) » 4
and then,
Iy G, J) — aGi, j) = b(i, j) cos (1, j) + @) . 5)

Expressions (4) and (5) resemble the parametric equations of an
ellipse centered at the point of coordinates (a(i, j), a(i, j)) with semi-axes
oriented at 45°, and whose semi-axes ratio is equal to tan?(a/2),

x(1) — a(i, j) = b(i, j) cos (1) (6)
and
() — a(i, j) = b, j)cos (1 + a), @]

where (x(7), y()) are Cartesian coordinates and ¢ is a real parameter.

From (4) and (5) it is clear that in absence of noise, for each pixel
of the interferogram, each particular value k = 1,2, ..., K — 1 generates
a point (I, (i, j), I; ;1 (i, j)) over the ellipse described by Egs. (6) and (7),
as shown in Fig. 2.

By performing a least-squares fitting, one can find the best ellipse
fitting the experimental data (with K > 3), and thus, the semi-axes ratio
of this ellipse provides an estimation for the phase-step (a). A discussion
of least-squares techniques for fitting ellipses is presented by Fitzgibbon
et al. [22].
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