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a b s t r a c t

We describe the relationship between different forms of linearized expressions for the spatial distribution of
intensity of X-ray projection images obtained in the Fresnel region. We prove that under the natural validity
conditions some of the previously published expressions can be simplified without a loss of accuracy. We also
introduce modified validity conditions which are likely to be fulfilled in many relevant practical cases, and
which lead to a further significant simplification of the expression for the image-plane intensity, permitting
simple non-iterative linear algorithms for the phase retrieval.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In recent years several results have been published [1–21] presenting
various forms of linearized analytical expressions for the spatial distri-
bution of the image-plane intensity in the case of in-line (projection)
imaging (which involves free-space propagation of the transmitted wave
from the exit surface of the object to the detector plane). The validity
conditions under which the respective formulae can be derived have
been discussed and analysed with varying degrees of rigour. No serious
attempt seems to have been made so far to reconcile some of the
‘‘competing’’ expressions and compare theoretically their respective
regions of validity. In the present paper we perform a detailed analysis
of the validity conditions that were used explicitly or implicitly in
previous publications and attempt to establish a definitive relationship
between the respective results. We demonstrate that if the validity
conditions required for their derivation are applied consistently, some of
the formulae can be further simplified. The simplified expressions may
also be more amenable to standard phase-retrieval approaches, where
one collects one or more images in planes orthogonal to the optic axis
at different object-to-detector distances, and then uses these images to
retrieve the distribution of phase of the transmitted wave in the object
plane.

We then suggest a modified validity condition which is likely to
be fulfilled in many relevant experimental arrangements, with the new
condition leading to a particularly simple linearized expression for the
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image-plane intensity as a function of the object-plane phase. We also
demonstrate that all of the considered linearized expressions reduce to
the Transport of Intensity equation (TIE) in the limit of large Fresnel
numbers, and they reduce to the first Born approximation (also known
in this context as the weak object or Fourier Optics approximation) in
the limit of weak absorption and small phase shifts. We hope that this
exposition will help to clarify the relationship between the previously
published results and will establish sufficiently clear validity conditions
that could be used by researchers to determine the limits of applicability
of various expressions under particular experimental conditions that
may be encountered in the practice of phase-contrast imaging and
tomography.

Recently, the phase-retrieval method based on the assumption of
homogeneity (also called monomorphicity) of the imaged sample, that
was originally proposed in Ref. [8], has gained widespread acceptance
and has been successfully used for a broad variety of practical imaging
applications, largely due to the fact that it only requires a single in-line
image to be collected in order to reconstruct both the object-plane phase
and intensity distributions (the phase and the logarithm of intensity
distributions are assumed to be related via a fixed proportionality
constant in this method). The other two well-known cases, where a
single image is sufficient for unambiguous phase retrieval, namely
contact imaging (where the phase does not affect the registered intensity
distribution) and pure-phase objects (that have negligible absorption),
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can be naturally considered as special cases of the homogeneous object
approximation [12,14]. The practical advantages of this approach are
not limited to the fact that it requires a single image for phase retrieval,
instead of two or more images required in the general case, but also to
a related benefit of substantial extra robustness with respect to image
noise and artefacts, compared to the general in-line phase retrieval. In
the present work, however, we do not analyse homogeneous versions
of the phase retrieval formulae considered here, as the transition from
the general to the homogeneous case has been already extensively
studied elsewhere (see e.g. [8,12,14,21,22]). A reader interested in in-
depth comparative analysis of most popular varieties of in-line phase-
retrieval methods, with emphasis on their application in phase-contrast
tomography, can be advised to consult an excellent review [23].

2. Guigay conditions and linearizability

Let an object (scatterer) be located in a vicinity of the optic axis
in the half-space z < 0 immediately before the ‘object’ plane z = 0.
We assume for simplicity that the wave incident on the sample is
a plane monochromatic wave with wavelength 𝜆 and unit intensity,
propagating along the optic axis z, i.e. the complex amplitude of the
incident wave is exp(ikz), 𝑘 = 2𝜋∕𝜆. Generalization of the following
results to cases involving polychromatic and spatially partially coherent
incident radiation can be carried out similarly to the way described in
Ref. [14]. The scattering properties of the object are assumed to be such
that the wave transmitted through the object is paraxial, i.e. all the
wavefront normals in the object plane are contained in a narrow cone
around the direction of the z axis. The transmitted wave propagates in
the free half-space z > 0 until it reaches a position-sensitive detector.
As the transmitted wave has been assumed to be paraxial, its evolution
in the free half-space z > 0 can be described by the Fresnel diffraction
integral [1],

𝐅𝐫 [𝑞, 𝑅] (𝑥, 𝑦) =
exp (𝑖𝑘𝑅)

𝑖𝜆𝑅 ∬ exp
{ 𝑖𝜋
𝜆𝑅

[

(

𝑥 − 𝑥′
)2 +

(

𝑦 − 𝑦′
)2
]}

× 𝑞
(

𝑥′, 𝑦′
)

d𝑥′d𝑦′, (1)

where 𝑞 (𝑥, 𝑦) ≡ 𝑎 (𝑥, 𝑦) exp [𝑖𝜑 (𝑥, 𝑦)] is the complex scalar amplitude of
the wave in the object plane and R is the distance between the object
and image planes. The detector is assumed to be capable of measuring
the spatial distribution of intensity in the image plane,

𝐼𝑅 (𝑥, 𝑦) = |𝐅𝐫 [𝑞, 𝑅] (𝑥, 𝑦)|2. (2)

In phase-contrast imaging and phase-contrast tomography one is of-
ten interested in finding the object-plane phase 𝜑 (𝑥, 𝑦) and absorption1

𝜇 (𝑥, 𝑦) = − ln 𝑎 (𝑥, 𝑦) from the measured intensity distribution in one
or more image planes 𝑧 = 𝑅𝑚, 𝑚 = 1, 2,… ,𝑀 . It is easy to see
that Eq. (2) is non-linear with respect to the object-plane phase and
amplitude, and as such is usually rather challenging to solve analytically
or numerically. Therefore, it appears useful to derive linearized forms
(approximations) of Eq. (2) which would be sufficiently accurate under
certain well-specified conditions.

For simplicity, in what follows we mostly consider the one-
dimensional situation (i.e. we omit the dependence of all functions
on y). Generalizations of the derivations to the corresponding two-
dimensional cases are straightforward and do not require any new
insight.

The starting point for many known derivations of linear approxima-
tions to Eq. (2) is the following expression for the Fourier transform of
image intensity distribution given by Guigay [2]:

𝐼𝑅 (𝑢) = ∫ exp (𝑖2𝜋 𝑢𝑥) 𝑞 (𝑥 + 𝜆𝑅𝑢∕2) 𝑞∗ (𝑥 − 𝜆𝑅𝑢∕2) 𝑑𝑥, (3)

1 It could be more appropriate to call this quantity ‘‘attenuation’’, rather than ‘‘absorp-
tion’’, as it usually also includes various scattering processes that lead to the reduction
in the number of transmitted X-ray photons reaching the detector. We will use below the
two terms interchangeably.

where 𝑓 (𝑢) = ∫ exp (𝑖2𝜋 𝑢𝑥) 𝑓 (𝑥) 𝑑𝑥 denotes Fourier transform and
the superscript asterisk denotes complex conjugation. Eq. (3) can be
obtained directly by applying Fourier transform to the square modulus
of (the one-dimensional version of) Eq. (1). The following two assump-
tions were effectively employed in Refs. [10,11,15] in order to linearize
Eq. (3) with respect to the object-plane phase distribution:

𝜑 (𝑥 + 𝜆𝑅𝑢∕2) − 𝜑 (𝑥 − 𝜆𝑅𝑢∕2) = 𝑂 (𝜀) , (4)

𝑎 (𝑥 ± 𝜆𝑅𝑢) − 𝑎 (𝑥) ∓ 𝜆𝑅𝑢 𝑎′ (𝑥) = 𝑂
(

𝜀2
)

, (5)

where 𝜀 << 1 is a small (asymptotic) parameter, superscript prime sign
denotes a derivative, and O (𝜀) and O (𝜀2) denote quantities that are
of the order of 𝜀 and 𝜀2, respectively. Eq. (4) is known as Guigay’s
condition; it was first used in Ref. [2]. Eq. (5) represents a form of
linearizability condition for the real amplitude.

Comparing Eqs. (4) and (5), it can be deduced that the limits imposed
by these validity conditions on the approximations that can be derived
on their basis, are generally more restrictive with respect to the allowed
variation of the absorption, than with respect to the refraction (i.e. phase
shifts). Therefore, it may not be possible to describe X-ray imaging
of samples containing strongly absorbing materials using the theories
that rely on the validity of Eqs. (4) and (5), unless the distribution of
strong absorbers in the samples is very uniform and slowly varying.
On the mathematical side, it can be noticed in the derivations below,
that, in the expressions describing free-space propagation of the image
intensity, the phase shifts at different spatial points of the object plane
are subtracted, allowing large shifts to cancel each other, while the
absorption contributions add up, and do not allow for such beneficial
cancellations. It will be also shown below (in Section 4) that conditions
on the amplitude 𝑎 (𝑥), similar to Eq. (4), can be imposed in order to
derive a convenient linearized expression for the in-line image intensity,
but that condition has to be of the higher order, namely O (𝜀2), i.e. more
restrictive, compared to the condition of the order O (𝜀) for the phase
in Eq. (4).

Although it was not specified explicitly in Refs. [10,11,15], one can
verify that for the validity of the subsequent results it is sufficient to
require that Eqs. (4)–(5) hold for all x, such that |𝑥| < 𝑋max + 𝜆𝑅𝑢max,
where 𝑞 (𝑥) ≡ 1 for |𝑥| ≥ 𝑋max,2 and for all u, such that |𝑢| ≤
𝑢max; here 𝑢max ≡ min

{

2𝑈max, 𝑢𝑠𝑦𝑠
}

, where 𝑈max is the radius of the
minimal circle enclosing the support of 𝑞 (𝑢) and 𝑢sys is the cut-off
frequency of the imaging system (determined by its spatial resolution)
(see e.g. [14,16,20]).3 The reason for the existence of a particular upper
limit on the required range of spatial frequencies in Eqs. (4)–(5) can be
easier appreciated from the following alternative form of Eq. (3) which
can be obtained by expressing 𝑞 (𝑥) and 𝑞∗ (𝑥) in Eq. (3) via their Fourier
transforms:

𝐼𝑅 (𝑢) = ∫ exp (−𝑖2𝜋 𝜆𝑅𝑢𝑈 ) 𝑞 (𝑈 + 𝑢∕2) 𝑞∗ (𝑈 − 𝑢∕2) 𝑑𝑈. (6)

It is obvious from Eq. (6) that if |𝑢| > 2𝑈max, then, for any U either
𝑞 (𝑈 + 𝑢∕2) = 0 or 𝑞∗ (𝑈 − 𝑢∕2) = 0, and so 𝐼𝑅 (𝑢) = 0.

It can be easily shown that when 𝑢max = ∞, then Eq. (4) implies that
𝜑 (𝑥) = 𝐶 + 𝛥𝜑 (𝑥), where C is a constant and 𝛥𝜑 (𝑥) = 𝑂 (𝜀) for all x (if
𝑞 (𝑥) ≡ 1 for |𝑥| ≥ 𝑋max, then C = 0).

Eq. (4) is used to approximate Eq. (3) with the help of the identity
exp (𝜀) = 1 + 𝜀 + 𝑂

(

𝜀2
)

applied to the phase:

𝐼𝑅 (𝑢) = ∫ exp (𝑖2𝜋 𝑢𝑥) 𝑎 (𝑥 + 𝜆𝑅𝑢∕2) 𝑎 (𝑥 − 𝜆𝑅𝑢∕2)

×
[

1 + 𝑖𝜑 (𝑥 + 𝜆𝑅𝑢∕2) − 𝑖𝜑 (𝑥 − 𝜆𝑅𝑢∕2)
]

𝑑𝑥 + 𝑂
(

𝜀2
)

= 𝐼 (0)𝑅 (𝑢) + 𝐼 (+)𝑅 (𝑢) + 𝐼 (−)𝑅 (𝑢) + 𝑂
(

𝜀2
)

, (7)

2 This setup corresponds to a finite object surrounded by completely transparent media;
a complementary configuration, where the object is placed inside a finite aperture in an
opaque screen, can be considered similarly.

3 Strictly speaking, in the considered situation 𝑞 (𝑥) cannot be band-limited, so formally
𝑈max = ∞, and one should use the ‘‘essential support’’ [24] of 𝑞 (𝑢) in place of its true

support. Note however that 𝑢sys is always finite, as the spatial resolution of an imaging
system cannot be infinitely fine.
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