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a b s t r a c t

The interplay between radiation loss (diagonal and off-diagonal) and Kerr-type nonlinearity on the light
propagation in 1D array of nonlinear dissipative optical waveguides are investigated numerically. Our results
show that, at low nonlinear parameters, the diagonal loss only reduces the light intensity in the guides and does
not affect the ballistic regime of light spreading. However, for nonlinear parameters above a critical value, the
transition from the localized to the ballistic regime can be observed, after certain propagation distance. The study
of the interplay between off-diagonal loss term and Kerr type nonlinearity, demonstrates that the results depend
mainly to the nonlinear parameter strength. In this case, and for low strength of nonlinearity, the transition from
ballistic to diffusive regime is observed after a critical propagation distance, while, spreading from localized to
diffusive regime occurs at high nonlinear parameters (above the critical one). In addition, we have examined the
impact of the both diagonal and off-diagonal losses in highly nonlinear optical lattices. In this case, by increasing
the propagation distance, three different regimes of light spreading (from localized to the ballistic, and then,
from ballistic to the diffusive) can be observed. Both critical propagation distances in which these transitions
occur increase by the magnitude of the nonlinear parameter, while, decrease by the enhancement of the loss
coefficients.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, by appropriate design of guides for light propagation,
the optical waveguide arrays provide experimental tools to simulating
and testing certain fundamental theories and phenomena in some
branches of physics, such as condensed matter and quantum optics
[1–4]. In design, there are some basic effects such as disorder, loss and
gain, surface and nonlinear effects, which affects the light propagation
in optical waveguide arrays [1–3,5–8]. The presence of loss leads to
a non-Hermitian system with imaginary eigenvalues, and violates the
energy conservation, because of the energy transfer from the guides to
the environment. The co-existence of loss and gain in double lattices
open a new research about the non-Hermitian parity-time reversal ( )
symmetric lattices with real eigenvalues and conserved energy [9–16].

The  -symmetric lattices can be created by importing the gain
and loss to the double-lattices and appropriate design of the coupling
coefficients between guides [9–14]. Moreover, the symmetric treatment
can be observed in the passive systems contain the diagonal loss term
without the gain [9,14].
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In the previous work [17], we investigated the impact of loss on the
light propagation in linear optical waveguide arrays. As shown in [17],
loss introduces an extra imaginary term to the coupling coefficients
between neighbor guides, beside an imaginary term to the propagation
constant of each guide, which are called off-diagonal and diagonal loss
terms, respectively. In a linear system, the off-diagonal loss term results
on the transition of the light spreading from the ballistic to the diffusive
regime, after a critical propagation distance.

In propagation of high-power light in optical waveguide arrays, the
nonlinear effects must be considered. The most important nonlinear
effect on light propagation in the coupled waveguide array is the
third-order Kerr-type nonlinearity. In the absence of loss, and for a
nonlinear parameter above the critical one, the Kerr-type nonlinearity
hindered the ballistic expansion of light, through the self-trapping
mechanism [18–21].

In this paper, we investigate the interplay between the loss (diagonal
and off-diagonal terms) and Kerr-type nonlinearity. Both effects exist in
1D optical waveguide array, and in the case of high-power input light
and striking loss of guides, should be considered together.
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We have obtained different regimes of light spreading (from the
transverse localization to diffusive and ballistic regimes) based on
interplay between diagonal/off-diagonal loss term and Kerr-type non-
linearity. The transition between different regimes occurs after some
critical propagation distances that depend to the loss coefficients and
nonlinear parameter.

We believe that our findings are significant for the study of discrete-
optical solitons in waveguide arrays and optical fibers. Furthermore,
these results can be useful for high-intensity light propagation in non-
Hermitian and  -symmetric waveguide lattices [1,3,15,16].

This paper is organized in four sections. Section 2 is devoted to the
theoretical model. Numerical results and discussion are presented in
Section 3. Finally, we conclude and summarize our results in Section 4.

2. Theoretical model

There are two sources of loss in waveguide lattices: material ab-
sorption and geometrical loss. The first source play a role when the
frequency of incident light is near the one of absorption frequencies of
waveguide material [22]. The later loss is related to the geometry of the
waveguide’s boundary. At the boundary, tail of the electric field, in the
nearby environment, move with different velocity respect to the electric
field profile in the guide, and causes the transfer of energy from the
middle of guide to its surrounding medium, to compensate the velocity
mismatch. This type of loss is known as a radiation loss and can be
controlled by the appropriate design of guide’s boundaries [22]. The
radiation loss introduces inherently in the light propagation along the
1D array of optical waveguides, while the material loss needs tuning of
the incident light frequency.

In our previous work [17], the radiation loss is introduced by
considering the electric permittivity of guides and surrounding medium
as two different complex numbers. In the presence of radiation loss and
by employing the slowly varying envelope approximation (SVEA), the
light propagation in 1D array of optical waveguides (see Fig. 1) can be
described by the following tight-binding (TB) equations [17]:

−𝑖
𝑑𝐸𝑛(𝑧)
𝑑𝑧

= (𝐾𝑛 + 𝑖𝜅𝑛)𝐸𝑛(𝑧) + (𝐶𝑛−1 + 𝑖𝐶 ′
𝑛−1)𝐸𝑛−1 + (𝐶𝑛 + 𝑖𝐶 ′

𝑛)𝐸𝑛+1,

𝑛 = 1, 2,… , 𝑁, (1)

where, 𝐸𝑛(𝑧) is the electric field amplitude of light wave in the 𝑛th
guide, which propagate along the 𝑧 direction (see Fig. 1), 𝐾𝑛 is the
propagation constant of 𝑛th guide, 𝐶𝑛 is the coupling coefficient between
𝑛th and (𝑛+1)th guides, and 𝑁 is the number of waveguides. Imaginary
parts 𝜅𝑛 and 𝐶 ′

𝑛 indicate the radiation loss. Diagonal loss term 𝜅𝑛
depends on the imaginary parts of the dielectric constants of the system,
while off-diagonal term 𝐶 ′

𝑛 is proportional to the mismatch between
the imaginary parts of the dielectric constants of guides and their
surrounding medium(absorption discrepancy). 𝐶 ′

𝑛 is also proportional to
the coupling coefficient 𝐶𝑛 between guides. This imaginary off-diagonal
term strongly affects the dispersion relation of the system and, in the
linear case, after a critical propagation distance, changes the transverse
spreading of light from the ballistic to diffusive regime [17].

In the presence of third-order Kerr-type nonlinearity, the system of
Eq. (1) are modified as follow:

−𝑖
𝑑𝐸𝑛(𝑧)
𝑑𝑧

= (𝐾𝑛 + 𝑖𝜅𝑛)𝐸𝑛(𝑧) + (𝐶𝑛−1 + 𝑖𝐶 ′
𝑛−1)𝐸𝑛−1 + (𝐶𝑛 + 𝑖𝐶 ′

𝑛)𝐸𝑛+1

+𝛾 ∣ 𝐸𝑛(𝑧)∣
2𝐸𝑛(𝑧), (2)

where 𝛾 = 𝑛2𝜔
𝑐𝐴𝑒𝑓𝑓

is the nonlinear parameter. Moreover, 𝑛2, 𝜔, 𝑐 and
𝐴𝑒𝑓𝑓 are the nonlinear refractive index, frequency of incident light,
speed of light in vacuum and the effective area of single-mode guide,
respectively.

Here, we consider a periodic 1D array of identical guides surrounded
by the same medium. Therefore, 𝐾𝑛 = 𝐾, 𝜅𝑛 = 𝜅0, 𝐶𝑛 = 𝐶, 𝐶 ′

𝑛 = 𝐶 ′ = 𝛼𝐶,
and we have:

−𝑖
𝑑𝐸𝑛(𝑧)
𝑑𝑧

= (𝐾 + 𝑖𝜅0)𝐸𝑛(𝑧) + 𝐶(1 + 𝑖𝛼)(𝐸𝑛−1 + 𝐸𝑛+1)

+𝛾 ∣ 𝐸𝑛(𝑧)∣
2𝐸𝑛(𝑧). (3)

Fig. 1. (Color online) Array of optical waveguides.

By applying 𝜑𝑛(𝑧) =
𝐸𝑛(𝑧)
√

𝑃
𝑒−𝑖(𝐾+𝑖𝜅0)𝑧, 𝑍 = 𝐶𝑧, 𝜅 = 𝜅0

𝐶 and 𝜒 = 𝛾𝑃
𝐶 ,

we obtain the following set of the dimensionless nonlinear coupled
equations:

−𝑖
𝑑𝜑𝑛(𝑍)
𝑑𝑍

= (1 + 𝑖𝛼)(𝜑𝑛−1(𝑍) + 𝜑𝑛+1(𝑍)) + 𝜒𝑒−2𝜅𝑍 ∣ 𝜑𝑛(𝑍)∣2𝜑𝑛(𝑍),

𝑛 = 1, 2,… , 𝑁. (4)

Here 𝜒 is normalized nonlinear parameter, 𝑃 =
∑𝑁

𝑛=1 ∣ 𝐸𝑛(𝑍 = 0)∣2 is
the total power of light at the entrance plane, and 𝜅 and 𝛼 are the dimen-
sionless diagonal and off-diagonal loss terms, which are normalized to
the coupling coefficient 𝐶 between neighbor guides. It is important to
note that, in these equations, the exponential decay of light intensity
is factored out in 𝜑𝑛(𝑍), and instead of it, dimensionless nonlinear
parameter 𝜒𝑒−2𝜅𝑍 decreases along the propagation distance. This clearly
shows the reduction of nonlinear effects by loss, during propagation.
We use the Runge–Kutta Fehlberg method to solve numerically these
equations for 𝑁 = 200 waveguides, with zero boundary conditions,
when the middle guide (𝑛0 = 100) is excited at the entrance plane
(𝜑𝑛(𝑍 = 0) = 𝛿𝑛,𝑛0 ).

3. Numerical results and discussion

We define the participation rate (𝑃𝑅(𝑍)) in (1 + 1)D optical
waveguide arrays as a measure to study the different regimes of light
spreading along the transverse direction:

𝑃𝑅(𝑍) =

(

∫ ∞
−∞ ∣ 𝜑(𝑋,𝑍)∣2𝑑𝑋

)2

∫ ∞
−∞ ∣ 𝜑(𝑋,𝑍)∣4𝑑𝑋

=

( ∞
∑

𝑛=−∞
∣ 𝜑𝑛(𝑍)∣2

)2

∞
∑

𝑛=−∞
∣ 𝜑𝑛(𝑍)∣4

. (5)

The last term comes from the discretization of the middle term along
the transverse direction. This measure counts the number of guides
contain nonzero light amplitude. In completely extended finite system
with 𝜑𝑛(𝑍) = 1

√

𝑁
, the participation rate equals to the total number

of guides, i.e. 𝑃𝑅(𝑍) = 𝑁 , while in exactly localized regime where
𝜑𝑛(𝑍) = 𝛿𝑛,𝑛0 , the participation rate equals one.

In (1 + 1)D optical system, the participation rate has the length
dimension and can be interpreted as a beamwidth of light (𝑤(𝑍) =
𝑃𝑅(𝑍)), while in (2 + 1)D systems the participation rate has the length
square dimension and the beam width can be defined as the square
root of the participation rate (𝑤(𝑍) =

√

𝑃𝑅(𝑍)). The participation
rate (beamwidth) in 1D array of optical guides can change with the
propagation distance as 𝑃𝑅(𝑍) ∝ 𝑍𝛽 , where 𝛽 = 1, 0.5, 0 referring to the
light spreading in ballistic, diffusive and localized regimes, respectively.

Fig. 2 shows the light intensity distribution (𝐼𝑛(𝑍) =∣ 𝜑𝑛(𝑍)∣2) and
their corresponding beamwidth along the propagation distance in linear
(𝜒 = 0) dissipative system for different off-diagonal loss terms (𝛼) [17].
In this case, according to Eqs. (4), the value of diagonal loss 𝜅 does not
affect the intensity distribution of the system. As shown in this figure,
in the presence of off-diagonal imaginary term (𝛼), the mechanism of
light spreading in transverse direction changes from ballistic to diffusive
regime after a critical propagation distance (𝑍𝑐 ≃ 10, 5 in Fig. 2(b)
and (c), respectively). The critical propagation distance decreases by
enhancement of 𝛼. This result is in agreement with previous results
in [17] .

In Fig. 3, we investigated the impact of Kerr-type nonlinearity on
light propagation in the absence of any loss (𝜅 = 0, 𝛼 = 0). Kerr-type

388



Download	English	Version:

https://daneshyari.com/en/article/5449174

Download	Persian	Version:

https://daneshyari.com/article/5449174

Daneshyari.com

https://daneshyari.com/en/article/5449174
https://daneshyari.com/article/5449174
https://daneshyari.com/

