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a b s t r a c t

Fully analytic expressions, for the electric and magnetic fields of an ultrashort and tightly focused laser pulse of
the radially polarized category, are presented to lowest order of approximation. The fields are derived from scalar
and vector potentials, along the lines of our earlier work for a similar pulse of the linearly polarized variety. A
systematic program is also described from which the fields may be obtained to any desired accuracy, analytically
or numerically.
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1. Introduction

Present-day high-power laser systems, and ones that are currently
envisaged for the near future [1–3], are mostly of the pulsed type. For
many applications [4–11], including laser acceleration of electrons, ions
and bare nuclei, and laser interactions with bulk matter, the need for
super-intense pulses which contain merely a few laser cycles, continues
to grow. Hence, a proper theoretical representation for the electric and
magnetic fields of a pulse of this type is very much in demand and
continues to motivate work, and stimulate efforts, in the field [12–37].

A radially-polarized laser beam or pulse has two electric field
components, one radial, which helps to confine a beam of particles to a
region close to the propagation axis, and a second that is axial, which
comes in handy for particle acceleration [38–41]. This work is also
motivated by recent advances in the technology of radially polarized
laser systems [42,43]. For modeling ultra-short ultra-strong laser pulses,
the paraxial solutions of Maxwell’s equations are no longer adequate
[12–14]. The need for more accurate solutions to be employed [15,30]
seems timely now. This paper focuses on a pulse propagating in vacuum,
while some of the cited references treat cases involving media, such as
an under-dense plasma [15] or a dielectric interface [27].

This paper contributes to those continuing efforts and builds upon
former investigations [35–37]. Analytic expressions for the most dom-
inant terms in the description of the electric and magnetic fields of
an ultra-short and tightly-focused laser pulse of the radially-polarized
category, will be derived. For our purposes in this work, ultra-short will
mean of axial length, 𝐿, small compared to a Rayleigh length 𝑧𝑟, and by
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tightly-focused will be meant of waist radius at focus, 𝑤0 ≤ 𝜆0, where
𝜆0 is a central wavelength.

This paper is organized as follows. First, key points of the background
material are briefly reviewed in Section 2. Based on that, analytic ex-
pressions for the zeroth-order fields, in some truncated series, assumed
to be the most dominant ones, will be derived in Section 3, following the
work of Esarey et al. [15] and our own earlier investigations [35,37].
Higher-order corrections will only be used in numerical simulations, as
they turn out to be quite cumbersome. To distinguish the present paper
from [35], which employs a uniform distribution of wavenumbers, two
different initial pulse frequency-distributions will be employed here,
one Gaussian and the other Poissonian. Two sets of zero-order fields,
obtained from the two distributions, will be derived and compared an-
alytically, as well as numerically. A summary and our main conclusions
will be given in Section 4.

2. Background

The fields will be derived from a vector potential 𝑨 which satisfies
the wave equation

𝛁2𝑨 − 1
𝑐2
𝜕2𝑨
𝜕𝑡2

= 0, (1)

and a similar equation for the scalar potential 𝛷 in vacuum, where 𝑐
is the speed of light. The vector and scalar potentials will be assumed
to be linked via a Lorentz condition. The Following is a brief outline of
the steps leading from Eq. (1) to an expression for 𝑨, and the associated
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scalar potential, from which the 𝑬 and 𝑩 fields of a radially polarized
laser pulse will ultimately be obtained [35]. The starting point is a
change of variables, to the set (𝜌, 𝜂, 𝜁 ), where 𝜌 = 𝑟∕𝑤0, 𝑟 =

√

𝑥2 + 𝑦2, 𝑤0
is the initial waist radius at focus, 𝜁 = 𝑧− 𝑐𝑡, and 𝜂 = (𝑧+ 𝑐𝑡)∕2. In terms
of the new variables, and for propagation along the 𝑧-axis, the ansatz

𝐴 = 𝐴0𝑎(𝜌, 𝜂, 𝜁 )𝑒𝑖𝑘0𝜁 , (2)

for the single-component vector potential is then introduced, in which
𝐴0 is a constant complex amplitude, and 𝑘0 = 2𝜋∕𝜆0 is a central
wavenumber corresponding to the central wavelength 𝜆0. The coor-
dinate transformations turn (1) into an equation for the amplitude
𝑎(𝜌, 𝜂, 𝜁 ), which may then be synthesized from Fourier components 𝑎𝑘,
according to

𝑎(𝜌, 𝜂, 𝜁 ) = 1
√

2𝜋 ∫

∞

−∞
𝑎𝑘(𝜌, 𝜂, 𝑘)𝑒𝑖𝑘𝜁𝑑𝑘. (3)

It can be easily shown that each Fourier component satisfies an equation
of the form
[

1
𝜌
𝜕
𝜕𝜌
𝜌 𝜕
𝜕𝜌

+ 4𝑖𝑧𝑟𝑘
𝜕
𝜕𝜂

]

𝑎𝑘 = 0; 𝑧𝑟𝑘 = (𝑘 + 𝑘0)
𝑤2

0
2
. (4)

Eq. (4) admits an exact analytical solution, which may be written as

𝑎𝑘(𝜌, 𝜂, 𝑘) = 𝑓𝑘𝜓𝑘, (5)

where

𝜓𝑘 = 𝛽𝑘𝑒
−𝛽𝑘𝜌2 ; 𝛽𝑘 =

1
1 + 𝑖𝛼𝑘

; 𝛼𝑘 =
𝜂
𝑧𝑟𝑘

. (6)

As has been pointed out elsewhere [15,35,36], 𝑓𝑘 is a function that
must be adopted to appropriately represent the wavenumber distribu-
tion in 𝑘-space of the initial pulse, and whose Fourier transform will be
related below to the spatio-temporal pulse envelope. Unfortunately, the
Fourier transform of 𝑎𝑘 according to Eq. (3) cannot be evaluated ana-
lytically, in general. Resort to approximation is, therefore, inevitable.
Viewing 𝜓𝑘 as a function of 𝑘′ ≡ 𝑘 + 𝑘0, the following series expansion
may be the natural approach to follow, namely

𝜓𝑘 =
∞
∑

𝑚=0

(𝑘′ − 𝑘0)𝑚

𝑚!
𝜕𝑚𝜓𝑘
𝜕𝑘′𝑚

|

|

|

|𝑘′=𝑘0
,

=
∞
∑

𝑚=0

𝑘𝑚

𝑚!
𝜓 (𝑚)
0 ; 𝜓 (𝑚)

0 ≡
𝜕𝑚𝜓𝑘
𝜕𝑘𝑚

|

|

|

|𝑘=0
. (7)

With the help of this expansion, the vector potential amplitude may be
written as

𝑎(𝜌, 𝜂, 𝜁 ) =
∞
∑

𝑚=0

𝜓 (𝑚)
0
𝑚!

𝐹𝑚(𝜁 ), (8)

where

𝐹𝑚(𝜁 ) =
1

√

2𝜋 ∫

∞

−∞

(

𝑓𝑘𝑘
𝑚) 𝑒𝑖𝑘𝜁𝑑𝑘, (9)

is Fourier transform of the product 𝑓𝑘𝜓𝑘. In anticipation of the conclu-
sion, to be arrived at shortly, that terms in the sum (8) beyond the first
will contribute negligibly in real applications, Eq. (8) will be replaced
by the truncated series

𝑎(𝑛)(𝜌, 𝜂, 𝜁 ) ≈
𝑛
∑

𝑚=0

𝜓 (𝑚)
0
𝑚!

𝐹𝑚(𝜁 ). (10)

At this stage, the complex amplitude will be written as 𝐴0 = 𝑎0𝑒𝑖𝜑0 ,
in which 𝜑0 is an initial phase and 𝑎0 is a real amplitude for the
exact vector potential. The status of 𝑎0 will be slightly modified in the
approximate solutions to be presented below, by introducing model-
dependent normalization factors, defined appropriately at each level
of truncation. With this, the truncated vector potential (to order of
truncation 𝑛) takes the form

𝐴(𝑛)(𝜌, 𝜂, 𝜁 ) ≈ 𝑎0𝑒
𝑖𝜑0+𝑖𝑘0𝜁

𝑛
∑

𝑚=0

𝜓 (𝑚)
0
𝑚!

𝐹𝑚(𝜁 ). (11)

Eq. (11) can be employed to obtain the electric and magnetic fields, to
any desired order of truncation. However, on account of the conclusion
to be made shortly for some initial frequency spectra, the zeroth-
order terms may be the most dominant ones and only the lowest-
order corrections may be necessary. For book-keeping purposes, explicit
expressions for 𝜓 (𝑚)

0 , with 𝑚 = 0 − 3, are [35,36]

𝜓 (0)
0 = 𝛽𝑒−𝛽𝜌

2
, (12)

𝜓 (1)
0 = 𝑖𝛼

𝑘0
(1 − 𝛽𝜌2)𝛽2𝑒−𝛽𝜌

2
, (13)

𝜓 (2)
0 = 𝑖𝛼

𝑘20

[

−2 + (4𝛽 − 2)𝜌2 + 𝑖𝛼𝛽2𝜌4
]

𝛽3𝑒−𝛽𝜌
2
, (14)

𝜓 (3)
0 = 𝑖𝛼

𝑘30

[

6 + 6(2 − 3𝛽)𝜌2 + 3𝑖𝛼𝛽(1 − 3𝛽)𝜌4 + 𝛼2𝛽3𝜌6
]

𝛽4𝑒−𝛽𝜌
2
. (15)

In Eqs. (12)–(15)

𝛽 = 1
1 + 𝑖𝛼

; 𝛼 =
𝜂
𝑧𝑟

; 𝑧𝑟 ≡ 𝑧𝑟0 =
1
2
𝑘0𝑤

2
0, (16)

where 𝑧𝑟 is the Rayleigh length. The zeroth-order electric and magnetic
fields of an ultrashort and tightly focused laser pulse will be derived
from the above equations, fully analytically. The first-order, and pos-
sibly higher-order corrections, can in principle be used in numerical
calculations.

3. The fields

The radially polarized 𝑬 and 𝑩 fields will be obtained below from
the one-component axially polarized vector potential

𝑨 = �̂�𝐴; 𝐴 = 𝑎0𝑎𝑒
𝑖𝜑0+𝑖𝑘0𝜁 , (17)

where �̂� is a unit vector in the direction of propagation of the pulse,
taken along the 𝑧-axis of a cylindrical coordinate system, together with
the associated scalar potential [35,36,44,45]. Employing SI units, the
radial and axial electric field components may be obtained, respectively,
from [35]

𝐸𝑟 = − 𝑐
2

𝑅
𝜕
𝜕𝑟

( 𝜕𝐴
𝜕𝑧

)

− 𝑐2

𝑅2

( 𝜕𝐴
𝜕𝑧

) 𝜕
𝜕𝑟

( 1
𝑎
𝜕𝑎
𝜕𝑡

)

, (18)

𝐸𝑧 = − 𝜕𝐴
𝜕𝑡

− 𝑐2

𝑅
𝜕2𝐴
𝜕𝑧2

− 𝑐2

𝑅2

( 𝜕𝐴
𝜕𝑧

) 𝜕
𝜕𝑧

( 1
𝑎
𝜕𝑎
𝜕𝑡

)

, (19)

in which

𝑅 = 𝑖𝑐𝑘0 −
1
𝑎
𝜕𝑎
𝜕𝑡
. (20)

Furthermore, the only (azimuthal) magnetic field component will follow
from

𝐵𝜃 = − 𝜕𝐴
𝜕𝑟
. (21)

Derivation of analytic expressions for the electric and magnetic fields
from the appropriate vector potential will be done below. The starting
point along this path is a choice that must be made for an appropriately
defined initial pulse spectrum. In the next two subsections, two such
choices will be made.

3.1. An initial Gaussian spectrum

An initial Gaussian spectrum is considered first, following Esarey
et al. [15] and our own earlier work [37]. Employing the same notation
as in [15,37] the initial wavenumber distribution will be given by

𝑓𝑘 =
𝜎
𝑘0

(

1 + 𝑘
𝑘0

)

exp

(

−𝑘
2𝜎2

2𝑘20

)

, (22)

in which 𝜎 is the pulse’s initial full-width-at-half-maximum, given in
terms of its spatial extension in the forward direction, 𝐿 ∼ 𝑐𝜏0, where
𝜏0 is the temporal pulse duration, by 𝜎 = 𝑘0𝐿∕(2

√

2 ln 2).
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