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a b s t r a c t

We propose and analyse analogs of optical cavities for atoms using three-well Bose–Hubbard models with
pumping and losses. We consider triangular configurations. With one well pumped and one damped, we find
that both the mean-field dynamics and the quantum statistics show a quantitative dependence on the choice
of damped well. The systems we analyse remain far from equilibrium, preserving good coherence between the
wells in the steady-state. We find quadrature squeezing and mode entanglement for some parameter regimes and
demonstrate that the trimer with pumping and damping at the same well is the stronger option for producing
non-classical states. Due to recent experimental advances, it should be possible to demonstrate the effects we
investigate and predict.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this article we analyse pumped and damped three-well triangular
Bose–Hubbard models [1–6] in terms of their mean field behaviour
and their quantum statistical properties. Our proposal in this work is
inspired by recent advances in the techniques of configuring optical
potentials [7,8], which allow for the fabrication of a variety of ge-
ometric configurations. Together with the ability to cause controlled
loss from particular lattice sites, utilising either electron beams [9],
or optical methods [10], this allows for the manufacture and study of
innovative lattice configurations. In some ways the pumped and damped
systems we investigate here are similar to coupled nonlinear optical
cavities [11,12], but there is one very important difference. While not
every optical cavity in a cluster need be pumped, it is impossible to
construct an optical resonator without losses. As we will demonstrate in
what follows, the ability to choose which well is to be damped leads
to some very interesting behaviour in both the mean fields and the
quantum correlations.

Driven dissipative dimers with damping at both wells have been
analysed by Casteels and Wouters [13], in terms of both entanglement
and bistability. Casteels and Ciuti [14] have examined phase transitions
in the same system. Triangular dimers and inline chains with dissipation
at one well have also been analysed [15,16], finding some interest-
ing physical effects. Piz̆orn has analysed Bose–Hubbard models with
pumping and dissipation [17], using density matrix techniques, which
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are useful for moderate numbers of atoms and wells. In this work we
examine Bose–Hubbard trimers in the triangular configuration, with
pumping and dissipation at one well each. A triangular lattice with
damping at the middle well, but without pumping, has been analysed
by Shchesnovich and Mogilevstev, showing that the mean-field analysis
is not accurate [18]. Since we do not wish to limit ourselves to the
smallish number of atoms used in other treatments, we use the truncated
Wigner representation [19,20], as in previous works examining different
configurations [21,22]. Unlike some of the other methods, the truncated
Wigner is easily extensible to higher well and atom numbers, with a
system of 11 wells and 2000 atoms having been analysed recently [23].

2. Hamiltonian and equations of motion

In a three-well triangle with pumping and damping at one well each,
there are two possible geometric configurations. Labelling the pumped
well as number one, we can choose to damp either well one or well
two. By symmetry, damping at well three is the same configuration as
that with damping at well two. We begin with the three-well triangular
Bose–Hubbard unitary Hamiltonian,

 = ℏ𝜒
3
∑

𝑖=1
�̂�† 2𝑖 �̂�2𝑖 − ℏ𝐽

[

�̂�†1(�̂�2 + �̂�3) + �̂�†2�̂�3 + ℎ.𝑐.
]

, (1)

where �̂�𝑖 is the bosonic annihilation operator for the 𝑖th well, 𝜒
represents the collisional nonlinearity and 𝐽 is the tunnelling strength.
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We will always consider that the pumping from the larger condensate is
at well 1 and can be represented by the Hamiltonian

𝑝𝑢𝑚𝑝 = 𝑖ℏ
(

𝜖�̂�†1 − 𝜖∗�̂�1
)

, (2)

which is of the form commonly used for the investigation of optical
cavities. The basic assumption here is that the first well receives atoms
from a coherent condensate, represented by the complex amplitude
𝜖, which is much larger than any of the modes in the wells we are
investigating, so that it will not become depleted over the time scales of
interest. The damping term for well 𝑖 acts on the system density matrix
as the Lindblad superoperator

𝜌 = 𝛾
(

2�̂�𝑖𝜌�̂�
†
𝑖 − �̂�†𝑖 �̂�𝑖𝜌 − 𝜌�̂�†𝑖 �̂�𝑖

)

, (3)

where 𝛾 is the coupling between the damped well and the atomic bath,
which we assume to be unpopulated. If the lost atoms fall under gravity,
we are justified in using the Markov and Born approximations [24].

Following the usual procedures [25,26], we may map the master
equation for the density operator onto a generalised Fokker–Planck
equation in the Wigner representation. This is not a true Fokker–Planck
equation because it has third-order derivatives and, although it can
be mapped onto stochastic difference equations [27], these are not
easy to integrate. By dropping the third-order terms, usually under the
assumption that they are small, we may map the problem onto Itô
stochastic equations [28] in the truncated Wigner representation. As
a representative example, the equations for pumping at well 1 and loss
at well 2 are
𝑑𝛼1
𝑑𝑡

= 𝜖 − 2𝑖𝜒|𝛼1|
2𝛼1 + 𝑖𝐽 (𝛼2 + 𝛼3),

𝑑𝛼2
𝑑𝑡

= −𝛾𝛼2 − 2𝑖𝜒|𝛼2|
2𝛼2 + 𝑖𝐽 (𝛼1 + 𝛼3) +

√

𝛾𝜂,

𝑑𝛼3
𝑑𝑡

= −2𝑖𝜒|𝛼3|
2𝛼3 + 𝑖𝐽 (𝛼1 + 𝛼2), (4)

where 𝜖 represents the rate at which atoms enter well 1, 𝛾 is the loss
rate from the selected well, and 𝜂 is a complex Gaussian noise with the
moments 𝜂(𝑡) = 0 and 𝜂∗(𝑡)𝜂(𝑡′) = 𝛿(𝑡 − 𝑡′). The variables 𝛼𝑖 correspond
to the operators �̂�𝑖 in the sense that averages of products of the
Wigner variables over many stochastic trajectories become equivalent
to symmetrically ordered operator expectation values, for example
|𝛼𝑖|

2 = 1
2 ⟨�̂�

†
𝑖 �̂�𝑖 + �̂�𝑖�̂�

†
𝑖 ⟩. The initial states in all wells will be vacuum.

We note here that we will use 𝜖 = 10 and 𝛾 = 𝐽 = 1 in all our
numerical investigations, while using two values of 𝜒 , 10−3 and 10−2.
The equations for configurations with damping at a different well are
found by the simple transfer of the terms involving 𝛾.

The parameters used here are consistent with known experimental
values. Fixing the tunnelling rate at 𝐽 = 1 sets the scale for all
the other parameters. Physically, the pumping rate and the loss rate
can be varied by adjusting well geometries and the strength of the
method used for outcoupling. 𝐽 itself can be changed by changes in
the well depths and separation. The most difficult parameter to change
experimentally would be 𝜒 , which is possible using Feshbach resonance
techniques [29]. Using the published results of Albiez et al. [30] and
setting their tunnelling equal to one, we find that their 𝜒 ≈ 10−4 in our
units. While this is smaller than what we have used, deeper wells would
lower 𝐽 and give a ratio 𝜒∕𝐽 consistent with our two values, or 𝜒 could
be changed using Feshbach techniques. By reference to the same article,
we can also say that our system is in the regime where the three-mode
approximation is valid.

We note here that the truncated Wigner has been chosen as an alter-
native to the exact positive-P representation [31] because this was found
to be unstable for the trimer configuration with loss at only one well. For
a similar configuration with loss at the two unpumped wells [32], the
positive-P representation was used, and gave indistinguishable results to
those found with the truncated Wigner for the same system. For a dimer
system with loss at one well, the truncated Wigner reproduced all the
positive-P results for first and second order moments [33], while being

qualitatively correct for higher moments. Since we are not interested in
the investigation of any moments higher than second order in this work,
we feel justified in using this method.

3. Quantities of interest

In this work we are interested in the number of atoms in each mode
and the correlation functions which are used to detect squeezing in each
mode and entanglement between the modes. The populations in each
well are calculated as 𝑁𝑖 = |𝛼𝑖|

2 − 1
2 while the correlations we use to

detect quantum statistical properties are constructed from expectation
values of moments of the mode operators. In order to proceed, we define
the atomic quadratures as

�̂�𝑗 (𝜃) = �̂�𝑗e−𝑖𝜃 + �̂�†𝑗e
𝑖𝜃 , (5)

so that the 𝑌𝑗 (𝜃) = �̂�𝑗 (𝜃+𝜋∕2). Single mode squeezing exists whenever a
particular quadrature variance is found to be less than 1, for any angle.
As is well known, one of the effects of a 𝜒 (3) nonlinearity can be to cause
maximum squeezing to be found at a non-zero quadrature angle [11], so
that it becomes important to investigate all angles. This is not the case
for resonant 𝜒 (2) systems such as second harmonic generation, where
the best squeezing is found for 𝜃 = 0.

In order to detect bipartite entanglement and inseparability, we will
use the Duan–Simon inequality [34,35] which states that, for any two
separable states,

𝑉 (�̂�𝑗 + �̂�𝑘) + 𝑉 (𝑌𝑗 − 𝑌𝑘) ≥ 4, (6)

where the variance of any quantity is defined as 𝑉 (𝐴) = ⟨𝐴2
⟩− ⟨𝐴⟩2. We

define the correlation function

𝐷𝑆𝑗𝑘 = 𝑉 (�̂�𝑗 + �̂�𝑘) + 𝑉 (𝑌𝑗 − 𝑌𝑘), (7)

for which a value of less than 4 means that modes 𝑗 and 𝑘 are
inseparable. Note that the angular dependence has been suppressed here
for clarity of notation.

The next quantum statistical effect is the Einstein–Podolsky–Rosen
(EPR) paradox [36], also known as EPR-steering [37,38]. For a con-
tinuous variable pumped and damped system, the usual method for
demonstrating the presence of steering is with the Reid criterion [39].
This is based on the fact that the Heisenberg Uncertainty Principle
requires that

𝑉 (�̂�𝑖)𝑉 (𝑌𝑖) ≥ 1.. (8)

Reid defines the inferred quadrature variances of two modes labelled 𝑖
and 𝑗, with an observer of mode 𝑗 inferring values of mode 𝑖, as

𝑉𝑖𝑛𝑓 (�̂�𝑖𝑗 ) = 𝑉 (�̂�𝑖) −

[

𝑉 (�̂�𝑖, �̂�𝑗 )
]2

𝑉 (�̂�𝑗 )
,

𝑉𝑖𝑛𝑓 (𝑌𝑖𝑗 ) = 𝑉 (𝑌𝑖) −

[

𝑉 (𝑌𝑖, 𝑌𝑗 )
]2

𝑉 (𝑌𝑗 )
, (9)

where the 𝜃 dependence is again suppressed, and 𝑉 (𝐴𝐵) = ⟨𝐴𝐵⟩ −
⟨𝐴⟩⟨𝐵⟩. When the product of these two inferred variances is less than
one, this means that mode 𝑖 can be steered by mode 𝑗. As shown by
Reid, a violation of the inequality signifies a two-mode state which
demonstrates the EPR paradox. It can be seen that this criterion is
directional, with the ability to swap 𝑖 and 𝑗 in Eq. (9). In what follows, we
will denote the value of the product of the inferred variances as 𝐸𝑃𝑅𝑖𝑗
when the quadrature variances of mode 𝑖 are inferred by measurements
at mode 𝑗. When one of the pair (𝐸𝑃𝑅𝑖𝑗 , 𝐸𝑃𝑅𝑗𝑖) is less than one and the
other is more than one, we have a phenomenon known as asymmetric
Gaussian steering. This property has been predicted in optical [40–
42] and atomic systems [43], and measured in the laboratory [44].
It is now established that it is a general property, and may also exist
for non-Gaussian measurements [45]. Since states which are steerable
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