
Optics Communications 403 (2017) 121–126

Contents lists available at ScienceDirect

Optics Communications

journal homepage: www.elsevier.com/locate/optcom

Suppression of subsidiary fringes in white light interferometry utilizing
two-wavelength light source
Qi Wang a,*, Kenneth Thomas V. Grattan b

a Department of Physics, Huazhong University of Sci. & Tech., Wuhan, 430074, PR China
b Department of Electrical, Electronic and Information Engineering, City University, Northampton Square, London, EC1V 0HB, UK

a r t i c l e i n f o

Keywords:
Interferometry
White-light
Two-wavelength
Metrology

a b s t r a c t

This paper analyzes and compares the two methods for suppressing the subsidiary fringes in white-light
correlograms with two-wavelength light source. One of the methods adds the intensities of the two wavelength
components and the other multiplies them. Peak intensity difference between the central fringe and the subsidiary
fringes is investigated. A mathematical expression for a rapid estimation of the optimum wavelength difference
between the two wavelengths is given for suppressing the subsidiary fringes. The effects of the intensities of the
two wavelength components have also been investigated.
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1. Introduction

White-light interferometric (WLI) sensors have been investigated by
many researchers previously for a wide range of applications, which
include thickness gauge [1], optical fiber sensor [2], surface profiler
[3–6], and microscope [7]. One of the advantages of WLI sensors is
that they can avoid the phase ambiguity by distinguishing the central
fringe of the correlograms. Light-emitting diodes (LEDs) are energy
efficient, light in weight, and low in cost comparing with conventional
light sources. But the central fringe of a correlogram illuminated by
a LED may not be easily distinguished by comparing the peak in-
tensities of the interference fringes, especially when noise is present.
K. G. Larkin has developed the efficient algorithms for the detection
of the envelope of white-light correlograms [8], which may help to
distinguish the central fringe. Two-wavelength methods can also be used
to enhance the central fringe of the low coherence correlograms [9–
13]. With a two-wavelength light source, a beat fringe pattern is
generated in the correlogram and hence the subsidiary fringes are
suppressed.

There are two types of two-wavelength methods. One of them is to
add the intensities of the two wavelength components [9–13], and the
other is to multiply them [12]. The fringe pattern produced by adding
may be called added correlogram and that produced by multiplying as
multiplied correlogram.

As shown in the upper part of Fig. 1, depending on the two
wavelengths used, the second largest fringe in an added correlogram
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or a multiplied correlogram can either be the first subsidiary fringe
or the largest fringe in the first subsidiary fringe packet. In order to
suppress the subsidiary fringes, we will examine the normalized peak
intensity difference between the central fringe and the first subsidiary
fringe (NPID1), and the normalized peak intensity difference between
the central fringe and the largest fringe in the first subsidiary fringe
packet (NPID2). A mathematical expression will then be given for a
rapid estimation of the optimum wavelength difference for suppressing
the subsidiary fringes when the coherence length and the shorter
wavelength are given. We will also look at the effects of the inten-
sities of the wavelength components on the NPID1 and NPID2 of the
correlograms.

This paper is divided into eight sections. Section 2 describes the
added correlogram and the multiplied correlogram theoretically, and
establishes a mathematical relationship between the two types of the
correlograms. Section 3 compares the added correlogram and the multi-
plied correlogram, and analyzes the arithmetic difference between them.
Section 4 derives expressions for NPID1 of the added correlogram and
that of the multiplied correlogram. Section 5 derives expressions for
NPID2 of the added correlogram and that of the multiplied correlogram.
Section 6 gives an expression for the rapid estimation of the optimum
wavelength difference for suppressing the subsidiary fringes. Section 7
looks at the effects of the intensities of the wavelength components on
NPID1 and NPID2 of the correlograms when the intensity ratio of the
two wavelength components varies from 0.1 to 10. Finally, Section 8
concludes the paper.
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2. Added correlogram and multiplied correlogram

When a Michelson interferometer is illuminated by a low coherence
source, such as a LED, its output correlogram can be given by
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where a represents the amplitude of the central fringe of the cor-
relogram, 𝜆 represents the central wavelength of the light source, x
represents the optical path difference (OPD) of the interferometer, and
l represents the coherence length of the light source.

When two low coherence sources of different colors are used to
illuminate the Michelson interferometer, the correlograms of the two
wavelength components can be expressed respectively as
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and
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where 𝜆1 and 𝜆2 represent the central wavelengths, 𝐼01 and 𝐼02 represent
the average intensities of the wavelength components.

By multiplying Eqs. (2a) and (2b), the multiplied correlogram can
be written as
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= 𝐼𝑎 (𝑥) − 𝐼𝑑 (𝑥) , (3)

where 𝐼0 = 𝐼01𝐼02,
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represents the added correlogram, and
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represents the arithmetic difference between the added correlogram and
the multiplied correlogram.

The added correlogram can be rewritten as
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and the arithmetic difference 𝐼𝑑 (𝑥) can be rewritten as
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where 𝐴 = 2𝐼01𝐼02 is the amplitude of the central fringe of the added
correlogram, 𝜆𝑎 = 2𝜆1𝜆2∕

(

𝜆1 + 𝜆2
)

is the average wavelength, and
𝜆𝑚 = 𝜆1𝜆2∕ ||𝜆1 − 𝜆2|| is the modulation wavelength. When the two
wavelengths used are 0.78 μm and 0.67 μm, the average wavelength is
about 0.72 μm and the modulation wavelength is about 4.75 μm.

It should be noted that Eq. (4a) represents the added correlograms
when the intensities of the wavelength components are equal.

Eq. (4b) shows that the arithmetic difference consists of two oscil-
lating terms. One of these oscillates at the modulation wavelength (𝜆𝑚)
and the other oscillates at a half of the average wavelength (𝜆𝑎∕2).

Fig. 1. The added correlogram 𝐼𝑎 (upper graph in upper part), the multiplied correlogram
𝐼𝑚 (lower graph in upper part), and the difference 𝐼𝑑 (graph in lower part). Coherence
length: 7.0 μm; two wavelengths: 0.78 μm and 0.67 μm.

3. Comparison between the added correlogram and the multiplied
correlogram

Fig. 1 plots the added correlogram (given by Eq. (4a)), the multiplied
correlogram (given by Eq. (3)), and the arithmetic difference between
them, when the amplitude A is unity.

In the upper part of Fig. 1, the envelopes of the correlograms
are modulated by the beat effect generated by the two wavelength
components. The beat effect suppresses the subsidiary fringes.

In the upper part of Fig. 1, we also find the subsidiary fringes in the
multiplied correlogram are smaller than those in the added correlogram.

There are two sinusoidal oscillations that can be seen in the graph
in the lower part of Fig. 1. The faster oscillation has a wavelength of
about 0.36 μm, which is a half of the average wavelength. The slower
oscillation has a wavelength of about 4.7 μm, which is the same as the
modulation wavelength. This is consistent with the theoretical result
given by Eq. (4b) where the two oscillating terms are present.

From Fig. 1, it can also be seen that the central fringe of the
arithmetic difference is about a quarter of the size of the central fringe
in the added correlogram. This is consistent with the theoretical results
given by Eqs. (4a) and (4b), where the number 4 can be seen in the
denominator in Eq. (4b).

By examining the graph in the lower part of Fig. 1, the arithmetic
difference has been maximized at the quadrature positions of the
correlograms, and minimized when the correlograms reach the extreme
values.

4. Estimation of NPID1

From Eqs. (3), (4a) and (4b), the peak intensity of the first subsidiary
fringe of added correlogram can be given by
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and the peak intensity of the first subsidiary fringe of multiplied
correlogram can be estimated by
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