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In this article, we numerically investigate the tight focusing of a quasi-cylindrical optical vortex with azimuthal
polarization and a wavelength of 532 nm using a Fresnel zone plate with a numerical aperture of NA = 0.95.
It is shown that the focal spot produced by a beam with six sectors does not differ from the ideally azimuthally
polarized optical vortex; a difference in the focal spot diameter does not exceed 0.001 of the wavelength.
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1. Introduction

Cylindrical vector beams (beams with polarization with a radial
direction of symmetry) are currently an active topic of research [1].
Recent years have also seen an increased interest in the study of
azimuthally and radially polarized optical vortices. It should be noted
that a radially polarized beam forms a sharp peak in a focal spot,
whereas azimuthally polarized light forms a ring in a focal spot. Thus,
an azimuthally polarized beam needs a phase singularity to produce a
peak in the focal spot.

In [2], it was shown that an azimuthally polarized optical vortex
produces a focal spot whose area (0.14742) is 13.5% smaller than a
focal spot from a radially polarized beam (0.174%). Optical needles
generated by azimuthally polarized vortices were investigated in [3].
These needles have a depth of 124 and a subwavelength width which
varies from 0.421 to 0.494. In [4], an azimuthally polarized beam
propagated through a multibelt phase hologram and high NA lens
(NA = 0.95) was used to generate a focal spot with a depth of focus
(DOF) of 4.844 and a subwavelength width of 0.534. In [5], a similar
multibelt phase hologram combined with an axicon lens was used to
generate an optical needle with a large DOF of 114 and a small width of
0.384. An optical needle with a subwavelength diameter of 0.384 and a
longitudinal depth of 7.48 was obtained in [6]. A focal spot limited by
sub-diffraction was obtained in [7].

The authors of [8] used 4r focusing to focus a radially polarized
optical vortex into a spot with a width of 0.434 and a depth of 0.454.
This type of focusing was also used in [9] to produce spherical and

sub-wavelength longitudinal magnetization. Solid immersion lens (SIL)
was used in [10] to produce a focal spot with a diameter of 0.3054.
The effect of coma on a tightly focused cylindrically polarized vortex
beams was investigated in [11]. A beam quality measuring technique
was introduced in [12]. The conversion of cylindrically polarized laser
beams from radial to azimuthal polarization was demonstrated in [13]
by introducing a higher-order vortex phase singularity.

There are several ways to obtain beams with sectoral azimuthal
or radial polarization (or quasi-cylindrical vector beams), including
the use of half-wave plates [14-17], nonlinear optical crystals [18],
polarizing films [19] and subwavelength gratings [20-22]. In addition
sectoral binary elements could be added to a lens to obtain smaller focal
spot [23,24].

The tight focusing of quasi-cylindrically polarized beams was pre-
viously investigated in detail in [25] using numerical analysis. It was
shown that a deviation of an eight-sector beam does not exceed 5.3%
from the ideal beam. However, azimuthally polarized optical vortices
have not been previously investigated.

In this paper, we numerically investigate the tight focusing of a quasi-
azimuthally polarized optical vortex with a wavelength of 532 nm using
a Fresnel zone plate with NA = 0.95. It is shown that the focal spot
produced by a beam with six sectors does not differ from the ideally
azimuthally polarized optical vortex; the difference in the focal spot
diameter does not exceed 0.001 4. For a four-sectoral beam, the difference
does not exceed 0.034.

* Corresponding author at: Image Processing Systems Institute—Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences,

151 Molodogvardeyskaya St., Samara 443001, Russia.
E-mail address: sergey.stafeev@gmail.com (S.S. Stafeev).

http://dx.doi.org/10.1016/j.optcom.2017.07.054
Received 17 May 2017; Received in revised form 15 July 2017; Accepted 19 July 2017
0030-4018/© 2017 Elsevier B.V. All rights reserved.


http://dx.doi.org/10.1016/j.optcom.2017.07.054
http://www.elsevier.com/locate/optcom
http://www.elsevier.com/locate/optcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2017.07.054&domain=pdf
mailto:sergey.stafeev@gmail.com
http://dx.doi.org/10.1016/j.optcom.2017.07.054

S.S. Stafeev, V.V. Kotlyar Optics Communications 403 (2017) 277-282

Fig. 1. Sketch of the simulation: the four-sector azimuthally polarized beam and four-

sector SPP.

2. Numerical simulation

Our numerical simulation was performed using the Richards-Wolf
formula [26]:

E(p,y,z) =

Table 1
Maximum error in the intensity distribution of the focus.
\ Number of sectors Maximum relative error
4 18,0
Sector SPP, sector polarization ’
P 6 8,6
4 18,9
Continuous SPP, sector polarization ’
6 8,8
. N 4 18,9
Sector SPP, continuous polarization 6 88

where B (60, ¢) is the electrical field of focused light (6 is the polar angle
and ¢ is the azimuthal angle), T () is apodization function, f is the focal
length, k = 2z/4 is the wavenumber, and P(0, ¢) is the polarization

{ matrix:
[1+cos’p (cos 8 — D] a (8, p)
~ +singcos @ (cosf —1)b (6, @)
P(0,p) =|sinpcos@(cosd —1)a (b, p) 2)

+ [1 +sin?p (cos & — 1)] (0, )
—sin 6 cos @a (6, @) — sin 0 sin @b (6, )

where a (6, ¢) and b (6, ¢) are polarization functions for the x- and y-
components of the focused beam. In the simulation, we assume that a
Fresnel zone plate (T (6) = cos —3/2(f), NA = 0.95 is same as in [3-7])
is illuminated using a plane wave that has a different polarization and
phase in each sector. In this case, a four-sector beam, for example, will
have a (0, @), b (8, ¢) and B (6, ¢) as follows:
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Fig. 2. Intensity in the focal plane for I,(a), I,(b), I(c). Focusing of a four-sector polarized beam transmitted through the four-sector SPP.
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