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a b s t r a c t

In this paper, propagation dynamics of off-axis symmetrical and asymmetrical optical vortices(OVs) embedded in
flat-topped beams have been explored numerically based on rigorous scalar diffraction theory. The distribution
properties of phase and intensity play an important role in driving the propagation dynamics of OVs. Numerical
results show that the single off-axis vortex moves in a straight line. The displacement of the single off-axis
vortex becomes smaller, when either the order of flatness N and the beam size 𝜔 0are increased or the off-
axis displacement d is decreased. In addition, the phase singularities of high order vortex beams can be split
after propagating a certain distance. It is also demonstrated that the movement of OVs are closely related
with the spatial symmetrical or asymmetrical distribution of vortex singularities field. Multiple symmetrical
and asymmetrical optical vortices(OVs) embedded in flat-topped beams can interact and rotate. The investment
of the propagation dynamics of OVs may have many applications in optical micro-manipulation and optical
tweezers.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The propagation and interaction of phase singularities, in partic-
ular of OVs, is of interest from a theoretical viewpoint [1–7] and
for important practical applications, such as in optical data storage,
microscopy [8], optical tweezers [9]. Phase singularity is a point phase
defect, where the amplitude of the wave is zero and the phase is inde-
terminate, but in its neighborhood the phase values circulate between 0
and 2𝜋𝑚 (here m being an integer representing topological charge of the
vortex). The phase distribution of the wave front [4] is continuous and
differentiable at every point just except at the optical vortex core. Vortex
influences the phase distribution of the whole wave front, though it is a
point defect. During the propagation of an optical beam in atmosphere,
OVs are created and destroyed in such a way that the total topological
charge remains conservation. Propagation study of singularities in the
wave front of a vortex beam is a complex problem in theory. Generally
speaking, near or far-field approximations of diffraction can be used to
solve this kind of problem.

In recent years, the propagation dynamics of OVs have attracted
interesting attention. OVs in linear and nonlinear media may exhibit
propagation dynamics similar to hydrodynamic vortex phenomena [10].
The propagation dynamics of an OV is influenced by the change of
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the wave-front slope at the vortex position, and the rotation rate
increase with the increase of the wave-front slope [11]. The propagation
dynamics of an arbitrary vortex pair through an astigmatic optical
system have been studied [12]. OVs were generated by three different
types of custom-designed wave fronts in experiment [13]. The dynamics
of OVs have also been examined in a nonuniform Bose–Einstein conden-
sate [14].

The Gouy phase, as a fundamental property in a focused field, has
been studied extensively [15–17]. The Gouy phase of focused, radially
polarized light has been observed phase shift of 2𝜋 or 𝜋 for the transverse
and longitudinal component, respectively [18]. The intensity and phase
distribution of a Gaussian beam with an off-axis vortex in a high NA
system have been analyzed [19], it is found that the initial position of
the off-axis vortex in the incident beam strongly influences the distance
of the transverse focal shift, but does not have an effect on the Gouy
phase along the central axis. Polarized beams represent an important
member of the family of vector beams, the focusing properties of
radially polarized hollow Gaussian beam (HGB) and circularly polarized
vortex beams with on-axis spiral optical vortex have been investigated
by vector diffraction theory [20,21]. The tight focusing behavior of
vector beams with multiple polarization singularities was explored. It is
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Fig. 1. Distributions of the phase(the first line), intensity(the second line) and intensity gradient(the third line) of the electric field embedded a tanh vortex in the source plane with
different flatness N. 𝑚 = 1, 𝜔0 = 1𝑚𝑚.

observed that the ellipticity of the local polarization states at the focal
plane could be determined by the spatial distribution of the polarization
singularities of the vector beam [22].

Recently, the flat-topped beam(FTB) with a nearly uniform intensity
distribution at a certain transverse plane has been extensively inves-
tigated [23–27] because of its wide applications in free-space optical
communication, material thermal processing, inertial confinement fu-
sion [26], and so on. FTB was introduced by Li in 2002 to describe the
beam having a flat-topped transverse profiles [23]. Cai proposed the
beams with elliptical flat-topped profiles [28]. The main advantage is
that the FTBs can be considered as a linear combination of fundamental
Gaussian beams with different beam width. Consequently, it can de-
scribe Gauss beam, flat topped beam and plane wave with the change
in parameters. It is very important to research the propagation of flat
topped beam in optical system. However, to the best of our knowledge,
there is no paper present literature dealing with that how the properties
of the source beam influence the propagation characteristics of OVs
embedded in flat-topped beams. Moreover, the spatial symmetry and
asymmetry of singularities field with multiple OVs also have not been
theoretically investigated in detail.

In this article, based on the rigorous scalar diffraction theory, the
effect of various values of the source parameters (the order of flatness
N, the beam size 𝜔0 and off-axis distance d ) and the topological charge
on the propagation characteristics of different types of OVs embedded in
flat-topped beams are investigated. This paper is organized as follows.
In Section 2, the theoretical foundation for the calculations of the
propagation dynamics of the OVs embedded in flat-topped beams are
given. In Section 3, the phase profiles and intensity distributions at
several distances in free space are studied numerically in detail, followed
by the conclusions in Section 4.

2. Theoretical analysis

Ginzburg and Pitaevskii [29] reported stationary vortex solutions to
nonlinear Schrödinger equation, which can be written as

− 2𝑖𝑘 (𝜕𝑢∕𝜕𝑧) + ∇2
⊥𝑢 + 2𝑘2

(

𝑛2𝐸
2
0∕𝑛0

)

|𝑢|2𝑢 = 0 (1)

where ∇2
⊥𝑢 is the transverse Laplacian in cylindrical coordinates, u is the

normalized field amplitude, 𝑛2 is the coefficient of nonlinear refractive
index, and 𝑛0 is the linear index of refraction. It has been shown to trans-
form into two of the principal equations in fluid mechanics: the Bernoulli
and the continuity equations [30,31]. One can obtain these equations
by writing the complex field envelope 𝑢 = 𝑓 (𝑟, 𝜃) exp[𝑖𝑠(𝑟, 𝜃, 𝑧)], Inserting
this expression into Eq. (1), one obtains two coupled equations:

− 𝜕s∕𝜕z + 𝐤⊥ ⋅ 𝐤⊥ = ∇2
⊥𝜌

1∕2∕𝜌1∕2 − 𝑃∕𝜌 (2)
(1∕2) 𝜕𝜌∕𝜕z + ∇⊥ ⋅

(

𝜌𝐤⊥
)

= 0 (3)

where 𝐤⊥ is the transverse wave vector of the beam and 𝜌 = 𝑓 2 (the
intensity) and 𝑃 = 2𝜌2 are analogous to the density and the pressure of
a fluid. It is clear from Eqs. (2) and (3) that two of the important terms
driving the propagation dynamics in both linear and nonlinear media
are the phase gradient 𝐤⊥ and the intensity gradient ∇⊥𝜌.

The electromagnetic field at any point 𝜌 in space is composed of
two parts: amplitude and phase, the general form of expression can be
written as:

𝐸 (𝜌) = 𝐸1 (𝜌) + 𝑖𝐸2 (𝜌) = 𝐴 (𝜌) exp [𝑖𝑆 (𝜌)] (4)

the phase can be expressed as:

𝑆 (𝜌) = arctan
(

𝐸2 (𝜌) ∕𝐸1 (𝜌)
)

. (5)

The phase represents the local propagation direction of the light
wave. The phase plane (wave front) of the light wave is consistent with
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