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a b s t r a c t

An integration method based on superposition theorem to calculate the stress field in the optical fiber with
arbitrary shape stress elements is derived. The identity between the theoretical analysis result and the integration
method in the optical fiber with sector shape bow-tie stress elements is proved. The integration method
calculation is compared with the Comsol Multiphysics software simulation and they are agreed well with each
other.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The stress type optical fibers [1–5], such as the Bow-Tie fiber, Panda
fiber and Elliptical Cladding fiber, are widely used in coherent optical
communications, fiber-optic sensing systems [6–9], and polarization
controlling devices. It is well known that the stress induced birefrin-
gence is highly related to the stress distribution in the stress induced
polarization maintaining optical fiber. But it is hard to acquire an
exact analytical stress expression except in the case with circular stress
inclusion, elliptical stress inclusion, or sector shape Bow-Tie inclusion
[10–12]. Though some numerical approaches based on finite element
method [13–18] have been developed to calculate the stress distribution
of the optical fiber with arbitrary stress doped region or non-circular
core, unfortunately, there is no explicit expression or formula for the
relationship between the stress components and the stress region shape
or other related parameters. This will result in disadvantage that the
stress distribution characteristics and the transmission property of the
optical fiber cannot be analyzed more generally and theoretically. In
this paper, the calculation method of the stress distribution in the
stress type optical fiber is studied comprehensively. An integration
method to precisely calculate the stress distribution with arbitrary
shape stress elements is introduced and derived. The effectiveness of
this method is proved theoretically based on superposition theorem
and demonstrated numerically by COMSOL Multi-physics software
simulation.
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2. Basic theory of the stress analysis

As is illustrated by Fig. 1, the stress field in elasticity material can
be expressed as a stress tensor:
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where 𝜎𝑥, 𝜎𝑦, 𝜎𝑧 are the normal stresses, 𝜏𝑥𝑦, 𝜏𝑦𝑥, 𝜏𝑥𝑧, 𝜏𝑧𝑥, 𝜏𝑦𝑧, 𝜏𝑧𝑦 are
the shear stresses, and 𝜏𝑥𝑦 = 𝜏𝑦𝑥, 𝜏𝑥𝑧 = 𝜏𝑧𝑥, 𝜏𝑦𝑧 = 𝜏𝑧𝑦 according to elastic
theory.

Because of the infinite elongation to the both ends and the bilateral
symmetry of the optical fiber, the displacement related to the strain is
only occurred in the cross section of the optical fiber. The stress analysis
in the optical fiber is a plane strain problem. The force balance equation
is expressed as [19]
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where the shear stress 𝜏𝑥𝑧 and 𝜏𝑦𝑧 disappear in the equation because
𝜏𝑥𝑧 = 𝜏𝑦𝑧 = 0, and 𝜎𝑧 = 𝑣

(

𝜎𝑥 + 𝜎𝑦
)

− 𝐸𝛼Δ𝑇 .
The compatibility equation in terms of stress is expressed as

∇2 (𝜎𝑥 + 𝜎𝑦
)

= 0. (3)

Eqs. (2) and (3) are the primary equations to solve the stress field
in the stress type optical fiber when they are combined with the free
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Fig. 1. Illustration of the stress tensor components.

Fig. 2. Cross section of the optical fiber with circular stress inclusion.

boundary condition and the connection condition between different
elastic material parts.

To acquire an exact solution in the stress type optical fiber the
potential function method based on complex variable is employed [12].
The stress components can be expressed by two complex potential
functions 𝜑 (𝑧) and 𝜓 (𝑧) as follows:

𝜎𝑥 + 𝜎𝑦 = 4𝑅𝑒
[

𝜑′ (𝑧)
]

(4a)

𝜎𝑥 − 𝜎𝑦 = −2𝑅𝑒
[

𝑧𝜑′′ (𝑧) + 𝜓 ′ (𝑧)
]

(4b)

𝜏𝑥𝑦 = 𝐼𝑚
[

𝑧𝜑′′ (𝑧) + 𝜓 ′ (𝑧)
]

. (4c)

When the potential functions 𝜑 (𝑧) and 𝜓 (𝑧) are given, the stress
components 𝜎𝑥 , 𝜎𝑦 and 𝜏𝑥𝑦 or the stress tensor

[

𝜎𝑥 𝜏𝑥𝑦
𝜏𝑦𝑥 𝜎𝑦

]

in the cross
section of the optical fiber will be determined.

3. Integration method and the identity with the theoretical
analysis

Firstly, let us consider the stress field with a circular stress inclusion
as is demonstrated in Fig. 2. As it is shown in reference [12], the complex
potential functions 𝜑 (𝑧) and 𝜓 (𝑧) can be written as follows when the
stress region is a circular inclusion.
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where 𝜑𝐼𝑛 (𝑧), 𝜓𝐼𝑛 (𝑧) and 𝜑𝑂𝑢𝑡 (𝑧), 𝜓𝑂𝑢𝑡 (𝑧) represent the corresponding
complex potential functions in the stress doped region and out of the
stress doped region (the region except the stress doped parts on the cross
section of the fiber). It should be noted that all length quantities, such
as the complex variable 𝑧, the circular stress inclusion radius 𝑐 and its
center location variable 𝑧𝑐 , are normalized by the optical fiber radius 𝑅.

𝜎0 = −𝐸Δ𝛼Δ𝑇
2(1−𝑣) is the normalized unit of the stress. 𝐸 and 𝑣 are

the Young’s modulus and Poisson ratio related to the elasticity. Δ𝛼 =
𝛼𝑠𝑎𝑝 − 𝛼𝑐𝑙𝑎𝑑 is the expansion coefficient difference between the stress
doped region and the substrate (e.g. the cladding of the optical fiber in
this case). Δ𝑇 = 𝑇𝑐𝑜𝑜𝑙 − 𝑇ℎ𝑜𝑡 is the temperature difference between the
cooled fiber room temperature and the melted fiber hot temperature in
the optical fiber drawing process.

Because Eqs. (2) and (3) and the boundary condition connecting
different elastic parts are all linear equations, the solution of the stress in
the elasticity should satisfy the superposition theorem. The contribution
from all stress doped parts as a whole can be acquired by adding together
the individual contribution from the stress doped parts.

Since the contribution from a single circular stress element with
radius c is as that shown by Eq. (5b), the contribution from a stress
element with small enough area ds may be expressed as
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The contribution from all stress elements can be acquired by inte-
gration on the stress doped region and may be expressed as follows:
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But here there is a problem that the stress doped region cannot be
fully filled by the circular stress elements because there is always some
interspace between them, as is shown by Fig. 3a. The uncovered ratio
in the stress doped region is more than

√

3−𝜋∕2
√

3
≥ 9.31%. Eq. (7) cannot

be used directly before it is confirmed.
Fortunately, as is shown by Fig. 3b, any shape stress doped region can

be divided into some small enough sector shape Bow-Tie stress elements
and there is no gap between them. The stress doped region can be fully
filled by the sector shape stress elements, just as the case the stress
doped region is divided into some rectangular or triangular shape stress
elements. Then the whole contribution can be expressed explicitly if
a general expression of the complex potential functions 𝜑 (𝑧) and 𝜓 (𝑧)
about a sector shape Bow-Tie stress element is acquired. In the following
paragraphs, it will be proved that the theoretical analysis result about
a sector shape Bow-Tie stress element can be derived identically from
the integration Eq. (7), which is based on the superposition theorem
and Eq. (5b).

To calculate the integration in Eq. (7) more simply and generally,
a sector shape Bow-Tie stress element is symmetrically put on the 𝑥-
axis as is shown by Fig. 4 and the stress normalized unit 𝜎0 is ignored
temporarily. The complex potential function 𝜑𝑂𝑢𝑡 (𝑧) is derived by the
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