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a b s t r a c t

A zero index metamaterial can be applied to perfect transmission or perfect reflection. In this paper we
theoretically present a strategy of microwave transmission through a zero-index metamaterial waveguide loaded
with defects. By simply adjusting the geometric and electromagnetic properties of the defects, higher modes
can be excited in the total transmission or total reflection. To do so, a waveguide with two and three defects
is considered and studied and the properties of defects are calculated from an analytical procedure. The results
show excitation of higher modes in total transmission and reflection of waveguide.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, there has been a considerable attention in the
field of the artificially subwavelength structured materials, commonly
known as metamaterials owing to their extraordinary optical proper-
ties that hardly be found in natural materials [1,2]. These materials
are used for a wide variety of novel applications, such as cloaks of
invisibility [3–5], perfect lenses [6–9], perfect absorbers [10,11], sensor
detections [12,13], super scatterer [14] and slow light devices [15]. By
designing meta-atoms, electric and magnetic resonances of the incident
electromagnetic radiations can be tailored beyond natural limitations.

By adjusting the arbitrarily values of the permittivity and permeabil-
ity, metamaterials can be classified into different types such as double
negative materials [16] (with simultaneously negative permittivity 𝜀
and permeability 𝜇), single negative materials [17] (with individually
negative permittivity 𝜀 or permeability 𝜇), epsilon-near-zero metamate-
rials (with an 𝜀 near zero and a 𝜇 of unity), mu-near-zero metamaterials
(with a 𝜇 near zero and an 𝜀 of unity), and matched impedance zero-
index materials (in which both the permittivity and permeability are set
to zero). Nowadays zero-index materials (ZIM), with both or individual
permittivity and permeability near to zero [18,19], prevails among
researchers in related fields due to their hyperphysical applications
such as tailoring wave front [20,21], squeezing and tunnelling wave
energy [22–25], waveguide bending [26], controlling energy flux [27],
total transmission and refection in ZIM [28–32] and etc.

Enoch et al. presented that a ZIM can enhance the directive emission
for an embedded source [33]; Ziolkowski demonstrated the possibility
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of designing a MIZIM [34]. Li et al. proved that there is a zero-n gap
inside the zero volume refractive index material, which is different from
the properties of Bragg gaps [35]. Silveirinha and Engheta studied an
ENZ medium that can squeezed and tunnelled the electromagnetic (EM)
waves in a narrow subwavelength waveguide to enhance the efficiency,
that was later demonstrated experimentally in microwave frequen-
cies [22,23]. Most recently, Hao et al. illustrated the possibility of total
reflection or transmission occurring by introducing defects inside the
ZIM in a waveguide [28]. Nguyen et al. showed that similar effects
can be obtained when dielectric defects are introduced into the MIZIM,
which offer an active control on transmission and reflection [29]. Xu
et al. theoretically perused the possibility of inverting total reflection
to total transmission in a ZIM waveguide by controlling the embedded
defects [30]. The experimental fabrication of low-loss ZIM operated at
optical wavelength of 1.55 µm was reported by Huang et al. Yangyang
Fu et al. illustrated additional modes in a single defect waveguide [36].

Although great progress has been made on the field of ZIMs and MIZ-
IMs, the interest of exploring new fantastic properties and applications
is never seen down.

In this paper, we will represent the possibility of higher order modes
excited with monopole mode when total transmission and total reflec-
tion occurring in a multi defect waveguide. This type of waveguides
can be used in optical communications, waveguide bending, nonlinear
optics and also by considering light focusing effect of these waveguide,
they can also be used in bio sensing.

http://dx.doi.org/10.1016/j.optcom.2017.07.034
Received 10 May 2017; Received in revised form 4 July 2017; Accepted 10 July 2017
0030-4018/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.optcom.2017.07.034
http://www.elsevier.com/locate/optcom
http://www.elsevier.com/locate/optcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2017.07.034&domain=pdf
mailto:m.zavvari@iaurmia.ac.ir
http://dx.doi.org/10.1016/j.optcom.2017.07.034


R. Vahedpour, M. Zavvari Optics Communications 403 (2017) 170–174

Fig. 1. Schematic of the proposed 2D waveguide with three defects. The (PMC) boundary
is for TE polarized excitation.

The paper is organized as follows. In Section 2 we introduce the
waveguide schematic and derive the formulas for each region. In
Section 3 we apply the results to achieve higher modes excitations in
the proposed configuration and finally in Section 4 the conclusions are
drawn.

2. Waveguide structure

To begin with, consider a two-dimensional (2D) waveguide struc-
ture, as shown in Fig. 1, Region 0 and 3 are free space separated by a ZIM
or MIZIM [region (1)] with the effective permittivity and permeability
𝜀1 and 𝜇1, respectively. In general, electromagnetic parameters of
region 1 are achieved by Drude medium theory:

𝜀1 = 1 − 𝜔2
pe∕[𝜔(𝜔 + 𝑖𝛤e)] 𝜇1 = 1 − 𝜔2

pm∕[𝜔(𝜔 + 𝑖𝛤m)] (1)

where 𝜔pe=𝜔pm=𝜔p indicate the plasma frequency and 𝛤e=𝛤m=𝛤
are related to the mean free path. Here we assumed that uniform and
isotropic metamaterials are used, however anisotropic metamaterials
are much easier to realize than isotropic materials. There are various
methods to achieve these kind of materials such as metal–dielectric
multilayered structures [37,38], metal wire arrays [39], etc. Region 2
consists of N cylindrical defects with relative electromagnetic parame-
ters 𝜀2j and 𝜇2j embedded in the host medium. We assume the incident
beam of waveguide with a transverse magnetic (TM) polarization, 𝐻𝑖𝑛 =
𝑧𝐻𝑜𝑧𝑒𝑖(𝑘0𝑥−𝜔𝑡) from the left port. For convenience, we omit the time
variation term 𝑒−𝑖𝜔𝑡 from the incident wave equation. The walls of
waveguide are set as PEC in order to minimize the propagation of
TM wave with polarization along the 𝑦-axis of the waveguide. Outer
boundaries can change into PMC in the case of transverse electric (TE)
field radiation.

Based on Ampere–Maxwell equation, relationship between electric
and magnetic field of each region can be written as:

⃖⃖⃖⃖⃗𝐸𝑗 =
−1

𝑖𝜔𝜀0𝜀𝑗
∇ × ⃖⃖⃖⃖⃗𝐻𝑗 (2)

where the integer 𝑗 indicates each region with the relative permittivity
of 𝜀𝑗 . Then the magnetic and electric fields in region 0 should be written
as:

⃖⃖⃖⃖⃗𝐻0 = 𝑧̂𝐻0𝑧
(

𝑒𝑖𝑘0𝑥 + 𝑅𝑒−𝑖𝑘0𝑥
)

; ⃖⃖⃖⃖⃗𝐸0 = 𝑦̂
𝑘0
𝜔𝜀0

𝐻0𝑧
(

𝑒𝑖𝑘0𝑥 − 𝑅𝑒−𝑖𝑘0𝑥
)

. (3)

Therefore, electromagnetic field in region 3 can be expressed as:

⃖⃖⃖⃖⃗𝐻3 = 𝑧̂𝑇𝐻0𝑧𝑒
𝑖𝑘0(𝑥−𝑑); ⃖⃖⃖⃖⃗𝐸3 = 𝑦̂

𝑘0
𝜔𝜀0

𝑇𝐻0𝑧𝑒
𝑖𝑘0(𝑥−𝑑) (4)

where k0 = 2𝜋f/c indicates the wave vector in free space and 𝑅 and
𝑇 represent the reflection and transmission coefficients, respectively.
Because the region 1 is occupied by a medium with 𝜀1 ≈ 0, then ∇× ⃖⃖⃖⃖⃗𝐻1
must be zero in order to keep a finite E1 so it is obvious that 𝐻1has a
constant value. By applying the boundary conditions at the interfaces
of region 0 and 1, we have 𝐻0z+𝑅𝐻0z=𝐻1 and at interface of region
1 and 3, 𝑇0z=𝐻1, which leads to 1 + 𝑅 = 𝑇 .

We are now ready to calculate magnetic field inside each cylindrical
defect by applying Helmholtz equation. Hence 𝐻2 is propagating along
the 𝑧-direction and we have:

∇2 ⃖⃖⃖⃖⃗𝐻𝑧 +2
2
⃖⃖⃖⃖⃗𝐻𝑧 = 0 (5)

where 2 =
√

𝜀2𝑗𝜇2𝑗𝑘0 , from Eq. (5) and cause

1
𝑟

[

𝜕
𝜕𝑟

(

𝑟
𝜕
(

𝐻𝑧
)

𝜕𝑟

)]

+ 1
𝑟2

𝜕
𝜕𝜃

(

𝜕𝐻𝑧
𝜕𝜃

)

+2
2𝐻𝑧 = 0. (6)

If we insert 𝐻𝑧 = 𝛷(𝑟)𝛩(𝜃) into the above equation we have:

𝑑2𝛩
𝑑𝜃2

+ 𝑛2𝛩 = 0 (7)

𝑟2 𝑑
2𝛷
𝑑𝑟2

+ 𝑟 𝑑𝛷
𝑑𝑟

+ (2
2𝑟

2 − 𝑛2)𝛷 = 0 (8)

where 𝛩(𝜃) ≅ 𝑒𝑖𝑛𝜃 and Eq. (8) affirms to generalized Bessel equation.
Eq. (6) have two answers for inside and outside the cylindrical defects.
So for the incident TM wave, the incident magnetic field in region 2,
can be expressed as:

⃖⃖⃖⃖⃖⃖⃗𝐻 𝑖𝑛
𝑧 = ⃖⃖⃖⃖⃗𝐻2 = 𝑧̂

𝑁
∑

𝑗=1

∞
∑

𝑛=−∞
𝑎𝑗𝑛𝐽𝑛(𝑘2𝑗𝑟𝑗 )𝑒

𝑖𝑛𝜃𝑗 (9)

⃖⃖⃖⃖⃖⃖⃖⃗𝐻𝑜𝑢𝑡
𝑧 = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐻𝑍𝐼𝑀 = 𝑧̂𝐻1

∞
∑

𝑛=−∞
𝑖𝑛[𝐽𝑛(𝑘1𝑗𝑟) + 𝑛𝐻𝑛(𝑘1𝑗𝑟)]𝑒

𝑖𝑛𝜃𝑗 (10)

where 𝐽𝑛 is the 𝑛th order Bessel function of first kind and 𝑘2𝑗 =
2𝜋𝑓
𝑐
√

𝜀2𝑗𝜇2𝑗 is the wave vector in 𝑗th cylinder. 𝐻n indicates the first
type of 𝑛th order Henkel function and B𝑛 is the scattering coefficient.

Due to continuity of magnetic field at the interface of region (1) and
(2), Dirichlet boundary conditions should be applied to Eq. (9), hence
after some algebra we have:

⃖⃖⃖⃖⃗𝐻2 = 𝑧̂𝐻1

𝑛
∑

𝑗=1

( 𝐽0(𝑘2𝑗𝑟𝑗 )
𝐽0(𝑘2𝑗𝑅𝑗 )

+ 𝛼𝑗𝑛𝐽𝑛(𝑘2𝑗𝑟𝑗 ) cos(𝑛𝜃𝑗 )

+ 𝛽𝑗𝑛𝐽𝑛(𝑘2𝑗𝑟𝑗 ) sin(𝑛𝜃𝑗 )
)

(11)

where 𝛼𝑗𝑛 and 𝛽𝑗𝑛 are coefficients of the higher order modes and 𝜃𝑗 is
relative angular coordinate in the 𝑗th cylinder. By combining Eqs. (2)
and (11) the electric field inside each defect could be expressed as
follows:

⃖⃖⃖⃖⃗𝐸2 = 𝑖𝐻1

𝑛
∑

𝑗=1

( 𝐽1(𝑘2𝑗𝑟𝑗 )
𝐽0(𝑘2𝑗𝑅𝑗 )

+ 𝛼𝑗𝑛𝐽
′
𝑛(𝑘2𝑗𝑟𝑗 ) cos(𝑛𝜃𝑗 )

+ 𝛽𝑗𝑛𝐽
′
𝑛(𝑘2𝑗𝑟𝑗 ) sin(𝑛𝜃𝑗 )

)

√

𝜇2𝑗
𝜀2𝑗

𝜃𝑗 .

(12)

We can now calculate transmission coefficient by applying Maxwell–
Faraday theorem:

∮ 𝐸⃗ ⋅ ⃖⃖⃖⃗𝑑𝑙 = −∬
𝜕(𝜇0𝜇2𝑗 ⃖⃖⃖⃖⃗𝐻2)

𝜕𝑡
⋅ 𝑑𝑠. (13)

The solution of Eq. (13) can be described as:

𝑇 = 1

1 − 𝑖𝑘0𝜇1(𝑆−𝑆𝑐 )
2ℎ − 𝑖𝜋

ℎ
∑𝑁

𝑗=1

[

𝑅𝑗𝐽1(𝑘2𝑗𝑅𝑗 )
𝐽0(𝑘2𝑗𝑅𝑗 )

]
√

𝜇2𝑗
𝜀2𝑗

. (14)

Here 𝑆 = 𝑑×h represents the entire area of ZIM and region 2, and 𝑆c
contributes to the total area of region 2. If no defects exists in the region
1 equation 14 decreases to:

𝑇 = 1
1 − 𝑖𝑘0𝜇1𝑆

2ℎ

= 1
1 − 𝑖𝑘0𝜇1𝑑

2

(15)

which implies that the transmission decays when length d increases and
only when the total area of the channel is very small, the transmission
coefficient will tend to unity. So in order to have a waveguide with nor-
mal dimensions, we used small sized random defects in the waveguide
structure to confine the wave propagation.
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