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a b s t r a c t

The single-point probability density functions (PDF) of the instantaneous Stokes parameters of a polarized plane-
wave light field scattered from a three-dimensional, statistically stationary, weak medium with Gaussian statistics
and Gaussian correlation function have been studied for the first time. Apart from the scattering geometry the PDF
distributions of the scattered light have been related to the illumination’s polarization state and the correlation
properties of the medium.

© 2017 Published by Elsevier B.V.

1. Introduction

An electromagnetic, wide-sense statistically stationary beam-like
light field may be characterized at a single position in space by a set
of four instantaneous Stokes parameters [1] being the generalizations of
the classic average Stokes parameters [2]. In general, the average Stokes
parameters, being the second-order moments of the electromagnetic
field are not related to its higher-order moments and its Probability
Density Functions [PDF]. However, in the case when the field at a single
point obeys Gaussian statistics the higher-order moments and the PDFs
of the instantaneous Stokes parameters can be expressed via the average
Stokes parameters by a set of analytical formulas [3–5].

Free-space propagation of the instantaneous Stokes parameters of a
beam generated by a planar source of Gaussian Schell-model type with
Gaussian single-point statistics has been examined in Ref. [6]. The PDFs
of the instantaneous Stokes parameters have been shown to preserve
their original structure but to acquire sharper profiles with the growing
propagation distance from the source. Special interest has been paid to
the second-order moment of the fluctuating intensity [7,8], known as the
scintillation index. The changes in some statistics of the instantaneous
Stokes parameters on propagation in the atmospheric turbulence, in
optical fibers and on scattering from rough surfaces have also been
examined [9–11].

Scattering of light from deterministic or random particles is yet
another situation in which the statistical properties of illumination may
be modified [12]. In particular, when a deterministic optical field is
scattered from a random medium the generated field itself becomes
random, acquiring the statistics of the medium. The average Stokes
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parameters of an electromagnetic plane wave scattered by a random
particle have been investigated in [13] (see also [14] and [15] for
an alternative representation of an electromagnetic field via the 2 × 2
correlation matrix). The intensity–intensity correlations of light on
scattering from media with Gaussian statistics have been examined in
Refs. [16–22]. However, the moments of arbitrary order and the PDFs
of the instantaneous Stokes parameters of scattered light have not been
discussed so far.

In this paper we analyze the distributions of the PDFs of the
instantaneous Stokes parameters of an electromagnetic, polarized plane
wave on scattering from a weak, stationary, homogeneous and isotropic
medium of Schell-model type with Gaussian correlation function [23].
More specifically we study how such distributions vary as a function of
polar and azimuthal scattering angles, polarization state of illumination
and the two parameters of the scatterer: typical width and typical corre-
lation width. We will confine our attention only to far-field scattering,
where the electromagnetic field is transverse, i.e., two-dimensional, and
can be characterized by four local Stokes parameters, unlike in other
regions where it might require complete three-dimensional polarimetric
characterization.

2. Scattering of the average and instantaneous Stokes vectors

We begin by outlining the scattering scenario (see Fig. 1). Consider
electric vector-field 𝐄(𝑖)(𝐫′) = [𝐸(𝑖)

𝑥 (𝐫′), 𝐸(𝑖)
𝑦 (𝐫′)] incident on a scatterer

occupying domain 𝐷 at position 𝐫′. Here 𝑥 and 𝑦 denote two mutually
orthogonal polarization directions transverse to the scattering axis 𝑧. We
also imply that the field is polychromatic but suppress its dependence
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Fig. 1. Illustrating the notation.

on frequency for brevity. The average generalized Stokes vector of the
incident light has form [24]

⟨𝑆(𝑖)
0 (𝐫′1, 𝐫

′
2)⟩ = ⟨𝐸(𝑖)∗

𝑥 (𝐫′1)𝐸
(𝑖)
𝑥 (𝐫′2)⟩ + ⟨𝐸(𝑖)∗

𝑦 (𝐫′1)𝐸
(𝑖)
𝑦 (𝐫′2)⟩,

⟨𝑆(𝑖)
1 (𝐫′1, 𝐫

′
2)⟩ = ⟨𝐸(𝑖)∗

𝑥 (𝐫′1)𝐸
(𝑖)
𝑥 (𝐫′2)⟩ − ⟨𝐸(𝑖)∗

𝑦 (𝐫′1)𝐸
(𝑖)
𝑦 (𝐫′2)⟩,

⟨𝑆(𝑖)
2 (𝐫′1, 𝐫

′
2)⟩ = ⟨𝐸(𝑖)∗

𝑥 (𝐫′1)𝐸
(𝑖)
𝑦 (𝐫′2)⟩ + ⟨𝐸(𝑖)∗

𝑦 (𝐫′1)𝐸
(𝑖)
𝑥 (𝐫′2)⟩,

⟨𝑆(𝑖)
3 (𝐫′1, 𝐫

′
2)⟩ = 𝑖[⟨𝐸(𝑖)∗

𝑦 (𝐫′1)𝐸
(𝑖)
𝑥 (𝐫′2)⟩ − ⟨𝐸(𝑖)∗

𝑥 (𝐫′1)𝐸
(𝑖)
𝑦 (𝐫′2)⟩],

(1)

where star stands for complex conjugate and angular brackets denote
the ensemble average taken over monochromatic field realizations.

Let the scatterer occupy domain 𝐷 of a three-dimensional space and
be characterized by the scattering potential

𝐹 (𝐫′) = 𝑘2

4𝜋
[𝑛2(𝐫′) − 1], (2)

𝑛(𝐫′) being the refractive index at position 𝐫′ within the scatterer, 𝑘 =
2𝜋∕𝜆, is the wave-number of light, 𝜆 being its wavelength in vacuum.
Further, let the potential obey Gaussian statistics [23] and have two-
point correlation function

𝐶𝐹 (𝐫′1, 𝐫
′
2) = ⟨𝐹 (𝐫′1)𝐹 (𝐫′2)⟩𝑀 , (3)

where angular brackets with subscript 𝑀 stands for average taken over
the scatterer’s realizations.

Within the validity of the first Born approximation the three-
dimensional scattered electromagnetic field along direction 𝐫 = 𝑟𝐬,
where 𝐬 is a unit vector along the direction of vector 𝐫, can be found
from double cross product [27]:

𝐄(𝑠)(𝑟𝐬) = −𝐬 ×
[

𝐬 × ∫𝐷
𝐹 (𝐫′)𝐺(𝐫, 𝐫′)𝐄(𝑖)(𝐫′)𝑑3𝑟′

]

, (4)

where

𝐺(𝐫, 𝐫′) =
exp[𝑖𝑘|𝐫 − 𝐫′|]

|𝐫 − 𝐫′|
(5)

is the free-space Green’s function. More explicitly, three Cartesian
components of the scattered field have the form:

𝐸(𝑠)
𝑥 (𝑟𝐬) = (1 − 𝑠2𝑥)𝑄𝑥(𝑟𝐬) − 𝑠𝑥𝑠𝑦𝑄𝑦(𝑟𝐬),

𝐸(𝑠)
𝑦 (𝑟𝐬) = −𝑠𝑥𝑠𝑦𝑄𝑥(𝑟𝐬) + (1 − 𝑠2𝑦)𝑄𝑦(𝑟𝐬),

𝐸(𝑠)
𝑧 (𝑟𝐬) = −𝑠𝑥𝑠𝑧𝑄𝑥(𝑟𝐬) − 𝑠𝑦𝑠𝑧𝑄𝑦(𝑟𝐬),

(6)

where

𝑄𝑖(𝑟𝐬) = ∫𝐷
𝐹 (𝐫′)𝐺(𝐫, 𝐫′)𝐸(𝑖)

𝑖 (𝐫′)𝑑3𝑟′, (𝑖 = 𝑥, 𝑦). (7)

In spherical coordinate system (𝑟, 𝜃, 𝜙) associated with the scatterer (see
Fig. 1) the coordinates of the unit vector 𝐬 may be expressed as

𝑠𝑥 = sin 𝜃 cos𝜙, 𝑠𝑦 = sin 𝜃 sin𝜙, 𝑠𝑧 = cos 𝜃, (8)

where 𝜃 and 𝜙 are the azimuthal and polar angles, respectively. In the
far zone of the scatterer the field is transverse with respect to scattering
direction 𝐬 and hence can be characterized only by the azimuthal
and polar components, 𝐸𝜃 and 𝐸𝜙, in the spherical coordinates (see
also [13,25]):

𝐸(𝑠)
𝜃 (𝑟𝐬) = cos 𝜃 cos𝜙𝐸(𝑠)

𝑥 (𝑟𝐬) + cos 𝜃 sin𝜙𝐸(𝑠)
𝑦 (𝑟𝐬) − sin 𝜃𝐸(𝑠)

𝑧 (𝑟𝐬),
𝐸(𝑠)
𝜙 (𝑟𝐬) = − sin𝜙𝐸(𝑠)

𝑥 (𝑟𝐬) + cos𝜙𝐸(𝑠)
𝑦 (𝑟𝐬).

(9)

On combining Eqs. (6) and (9) we find, after some trigonometric
manipulations, that

𝐸(𝑠)
𝜃 (𝑟𝐬) = cos 𝜃 cos𝜙𝑄𝑥(𝑟𝐬) + cos 𝜃 sin𝜙𝑄𝑦(𝑟𝐬),

𝐸(𝑠)
𝜙 (𝑟𝐬) = − sin𝜙𝑄𝑥(𝑟𝐬) + cos𝜙𝑄𝑦(𝑟𝐬),

(10)

where 𝑄𝑥 and 𝑄𝑦 are given in Eq. (7).
The average Stokes parameters of the transverse scattered field in

the spherical coordinates can be defined as [13]

⟨𝑆(𝑠)
0 (𝑟𝐬)⟩ = ⟨𝐸(𝑠)∗

𝜃 (𝑟𝐬)𝐸(𝑠)
𝜃 (𝑟𝐬)⟩ + ⟨𝐸(𝑠)∗

𝜙 (𝑟𝐬)𝐸(𝑠)
𝜙 (𝑟𝐬)⟩, (11a)

⟨𝑆(𝑠)
1 (𝑟𝐬)⟩ = ⟨𝐸(𝑠)∗

𝜃 (𝑟𝐬)𝐸(𝑠)
𝜃 (𝑟𝐬)⟩ − ⟨𝐸(𝑠)∗

𝜙 (𝑟𝐬)𝐸(𝑠)
𝜙 (𝑟𝐬)⟩, (11b)

⟨𝑆(𝑠)
2 (𝑟𝐬)⟩ = ⟨𝐸(𝑠)∗

𝜃 (𝑟𝐬)𝐸(𝑠)
𝜙 (𝑟𝐬)⟩ + ⟨𝐸(𝑠)∗

𝜙 (𝑟𝐬)𝐸(𝑠)
𝜃 (𝑟𝐬)⟩, (11c)

⟨𝑆(𝑠)
3 (𝑟𝐬)⟩ = 𝑖[⟨𝐸(𝑠)∗

𝜙 (𝑟𝐬)𝐸(𝑠)
𝜃 (𝑟𝐬)⟩ − ⟨𝐸(𝑠)

𝜃 (𝑟𝐬)𝐸(𝑠)
𝜙 (𝑟𝐬)⟩]. (11d)

On substituting from Eqs. (10) into Eqs. (11) and using the far-zone
approximation of the Green’s function,

𝐺(𝑟𝐬, 𝐫′) ≈
exp[−𝑖𝑘𝐬 ⋅ 𝐫′ + 𝑖𝑘𝑟]

𝑟
, (12)

we obtain for the average scattered Stokes parameters the formulas:

⟨𝑆(𝑠)
0 (𝑟𝐬)⟩ = (cos2𝜃 + 1)𝑇0(𝑟𝐬) − sin2𝜃 cos 2𝜙𝑇1(𝑟𝐬) − sin2𝜃 sin 2𝜙𝑇2(𝑟𝐬),

(13a)

⟨𝑆(𝑠)
1 (𝑟𝐬)⟩ = − sin2𝜃𝑇0(𝑟𝐬) + cos 2𝜙(1 + cos2𝜃)𝑇1(𝑟𝐬)

+ sin 2𝜙(1 + cos2𝜃)𝑇2(𝑟𝐬), (13b)

⟨𝑆(𝑠)
2 (𝑟𝐬)⟩ = − 2 cos 𝜃 sin 2𝜙𝑇1(𝑟𝐬) + 2 cos 𝜃 cos 2𝜙𝑇2(𝑟𝐬), (13c)

⟨𝑆(𝑠)
3 (𝑟𝐬)⟩ = 2 cos 𝜃𝑇3(𝑟𝐬), (13d)

where

𝑇𝛼(𝑟𝐬) = 1
2𝑟2 ∫𝐷 ∫𝐷

⟨𝑆(𝑖)
𝛼 (𝐫′1, 𝐫

′
2)⟩𝐶𝐹 (𝐫′1, 𝐫

′
2)

× exp[−𝑖𝑘(𝐬 ⋅ (𝐫′2 − 𝐫′1))]𝑑
3𝑟′1𝑑

3𝑟′2,
(𝛼 = 0, 1, 2, 3).

(14)

Eqs. (13)–(14) imply that while Stokes parameter ⟨𝑆3(𝑟𝐬)⟩ of the scat-
tered field depends solely on the corresponding generalized Stokes
parameter ⟨𝑆(𝑖)

3 (𝐫′1, 𝐫
′
2)⟩ of the incident field the other three Stokes pa-

rameters are coupled. This situation is different from free-space paraxial
propagation where all four parameters propagate independently [24].

The instantaneous Stokes parameters of the scattered far field can be
defined as [1]

𝑆(𝑠)
0 (𝑟𝐬) = 𝐸(𝑠)∗

𝜃 (𝑟𝐬)𝐸(𝑠)
𝜃 (𝑟𝐬) + 𝐸(𝑠)∗

𝜙 (𝑟𝐬)𝐸(𝑠)
𝜙 (𝑟𝐬), (15a)

𝑆(𝑠)
1 (𝑟𝐬) = 𝐸(𝑠)∗

𝜃 (𝑟𝐬)𝐸(𝑠)
𝜃 (𝑟𝐬) − 𝐸(𝑠)∗

𝜙 (𝑟𝐬)𝐸(𝑠)
𝜙 (𝑟𝐬), (15b)

𝑆(𝑠)
2 (𝑟𝐬) = 𝐸(𝑠)∗

𝜃 (𝑟𝐬)𝐸(𝑠)
𝜙 (𝑟𝐬) + 𝐸(𝑠)∗

𝜙 (𝑟𝐬)𝐸(𝑠)
𝜃 (𝑟𝐬), (15c)

𝑆(𝑠)
3 (𝑟𝐬) = 𝑖[𝐸(𝑠)∗

𝜙 (𝑟𝐬)𝐸(𝑠)
𝜃 (𝑟𝐬) − 𝐸(𝑠)

𝜃 (𝑟𝐬)𝐸(𝑠)
𝜙 (𝑟𝐬)]. (15d)

The single-point PDFs of the instantaneous Stokes parameters of the
stationary light field governed by Gaussian statistics have been derived
in Refs. [3–5] and have forms:

𝑝[𝑆(𝑠)
0 (𝑟𝐬)] = 1

𝑃 (𝑠)(𝑟𝐬)⟨𝑆(𝑠)
0 (𝑟𝐬)⟩

{

exp
[

−
2𝑆(𝑠)

0 (𝑟𝐬)

(1 + 𝑃 (𝑠)(𝑟𝐬))⟨𝑆(𝑠)
0 (𝑟𝐬)⟩

]

−exp
[

−
2𝑆0(𝑟𝐬)

(1 − 𝑃 (𝑠)(𝑟𝐬))⟨𝑆(𝑠)
0 (𝑟𝐬)⟩

]}

, (16)

𝑝[𝑆(𝑠)
𝛼 (𝑟𝐬)] = 1

√

⟨𝑆(𝑠)
0 (𝑟𝐬)⟩2(1 − 𝑃 (𝑠)(𝑟𝐬)2) + ⟨𝑆(𝑠)

𝛼 (𝑟𝐬)⟩2

× exp

[

2
𝑆(𝑠)
𝛼 (𝑟𝐬)⟨𝑆(𝑠)

𝛼 (𝑟𝐬)⟩
⟨𝑆(𝑠)

0 (𝑟𝐬)⟩2(1 − 𝑃 (𝑠)(𝑟𝐬)2)

]

× exp

[

−2
|𝑆(𝑠)

𝛼 (𝑟𝐬)|
√

⟨𝑆0(𝑟𝐬)⟩2(1 − 𝑃 (𝑠)(𝑟𝐬)2) + ⟨𝑆(𝑠)
𝛼 (𝑟𝐬)⟩2

⟨𝑆(𝑠)
0 (𝑟𝐬)⟩2(1 − 𝑃 (𝑠)(𝑟𝐬)2)

]

(𝛼 = 1, 2, 3).

(17)
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