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Anderson localization of light is an exotic mesoscopic phenomenon sustained in disordered systems through the
self-interference of multiply scattered light. The localized modes are essentially eigenfunctions of the structural
disorder, and define the resonances in the system. In this paper, we report on the computed figures-of-merit of
Anderson cavities in two-dimensional membrane based structures, in which the disorder is written on a

periodic-on-average template. We propose a disorder parameter that better reflects the randomization of the
lattice points as compared to the conventionally used percentage disorder strength. Our results investigate the
viability of such cavities in applications such as random lasing and cavity quantum electrodynamics.

1. Introduction

Wave transport in disordered systems is a fundamental subject of
research and has relevance to a large range of topics ranging from
atmospheric physics to advanced nanophotonic systems [1,2]. In the
absence of interference effects, the light intensity obeys the diffusion
equation and realizes ohmic transport across a disordered sample. In
the presence of strong disorder, the finite diffusion coefficient tends to
vanish, with the manifestation of Anderson localization of light, created
by the self-interference of partial waves scattered throughout the
volume of disorder. This phenomenon was initially proposed to explain
the metal-insulator transition in disordered metallic crystals [3], and
was later observed in light [4,5] and sound [6] waves, more recently in
matter waves also [7]. Of all these systems, perhaps the largest activity
has happened in optical systems [8], perhaps due to the advancement
in the experimental achievements. In recent years, a large amount of
literature has been published in low-dimensional systems [9-12],
which include the situations wherein transverse localization [13] was
observed [14,15].

The recent years have seen a surge of activity in specialised optical
designs called periodic-on-average random systems (PARS). A PARS
design is based on an underlying periodic lattice, PARS implies a
deliberate randomization of periodic lattice points so as to perturb the
Bloch modes of the erstwhile periodic system. Indeed, the significance
of PARS design is evident from the fact that this configuration was
discussed in the earliest seminal works on localization [16]. PARS
systems have been discussed in several theoretical and experimental
developments [17-21], with particular emphasis on their localization
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properties. In recent years, the phenomenon of optical localization has
been seen through two vantage points, namely, cavity quantum
electrodynamics (CQED) and random lasing. Basically, CQED relates
to the modifying effects on the lifetimes of an emitter that is placed
within a cavity. The cavity controls the density of states available to the
emitter. Anderson localized states are resonant states realized by
accidental cavities formed due to disorder. Their ability to modify the
surrounding of an emitter has been recently studied in works on one-
dimensional localization in disordered waveguides [10]. It was ob-
served that the lifetimes of quantum dots tuned in and out of an
Anderson cavity were different, thus revealing the promise of these
unusual systems to study CQED within various coupling regimes. A
second field of interest in PARS are random lasers. Random lasers are
interesting optical devices that generate temporally coherent lasing
emission using disorder-mediated feedback [22-29]. Lasing in
Anderson localized cavities aim to utilize the high quality factor of
the localized modes [19,11,25,26,30].

The CQED properties of the resonators are quantified through the
Purcell factor, which is based on two figures-of-merit, namely, the
quality factor and the mode volume. Similarly, in the case of random
lasing, the lasing depends on the mode volume of the cavity which
determines the gain, and also the quality factor which determines the
feedback. Waveguides in disordered photonic crystals are examples of
one-dimensional localizing systems. The confinement in the propagat-
ing dimension occurs due to the modification in the waveguide mode
characteristics due to disorder in the neighbouring lattice. The localized
modes in a disordered photonic crystal waveguide case have a very
small mode volume, even for the smallest disorder. While this implies
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Fig. 1. Energy band structure of the quasi-two dimensional photonic crystal with a
triangular lattice, r/a=0.23. The inset shows the TE Band 1 field profile at the K point.

strong Purcell factor, it also indicates a stringent need of perfect
placement of quantum emitters in the system. However, apriori
prediction of the spatial location of the localized mode is very difficult.
Although computational methods can predict the location for a given
configuration, the inherent uncertainty in fabrication of the actual
sample may realize a shift in position which is larger than the mode
size. It is, therefore, of interest to study the behavior of a two-
dimensional system where the confinement is totally due to disorder
in the photonic crystal lattice. Experimental activity till now has
reported correlations in the light transport in such systems, wherein
multiple quantum dots emitted at various wavelengths under optical
excitation [31] were used. In this manuscript, we treat the situation
differently. We numerically investigate a two dimensional system that
is illuminated with a monochromatic source and the light is coupled to
a localized mode if it exists. We then compute the Purcell factor for the
resonator, and investigate the evolution of the Purcell factor as a
function of the disorder strength. We find that at high disorder, the
Purcell factor is large enough to motivate quantum optical experimen-
tation in such systems.
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2. Computations and results

The system under study is a membrane photonic crystal of GaAs
(dielectric constant 11.39) with an air-hole array overwritten on the
membrane, with an r/a ratio of 0.23 that exhibited a large bandgap. For
a wavelength of interest of 4 = 1.55 pm, which applies to telecommu-
nications, the physical dimensions for typical structure work out to be
as follows: thickness 240 nm, lattice constant 445 nm, and air-hole
radius 102 nm. For lasing or QED applications, the design has to be
made for quantum emitters, and one wavelength of interest is 1.3 pm
for InAs quantum dots [32]. For this case, the physical dimensions
should be 201 nm, 373 nm and 86 nm respectively. Initially, the
bandstructure of the periodic structure was computed using a plane-
wave basis [33]. Fig. 1 depicts the band structure for different
wavevectors along the I' > M, M=K and K—I" directions. The inset
shows the TE Band 1 electric-field distribution at the K point. The blue
line depicts the light line which separates the guided modes from the
non-guided modes in the membrane. We exploit the large gap at
® ~ 0.3 between which lies between the first and the second bands.

Subsequent calculations involved the realization of disorder, and
the temporal evolution of fields were solved in the time domain, using
finite difference time domain algorithms [34]. In this case, the virtual
structure included an air padding on either side of the membrane in the
Z direction, followed by perfectly matching layers (PML) in all
directions, to emulate open boundary conditions. The spatial resolution
was maintained to be 16 and the temporal resolution was 32. Disorder
was introduced by randomly tweaking the centre of the holes of the
erstwhile periodic triangular lattice structure by a calculated amount.
The maximum allowed change M, such that the holes do not overlap
each other, is given by M = a — 2r. Let the co-ordinates of the centre of
the holes be (x, y). To realize a percentage disorder P, we choose pairs
of random numbers (6x, dy) such that (dx)> + (dy)? < d?, where
d= % X %, P € [0, 100]. The new co-ordinates of the centre of the
holes are given by (x + &x, y + 5y).

In this treatment, we quantify the disorder strength using a
different disorder parameter {p, which is derived from the correlation
coefficient between the refractive index profile of the disordered
structure and that of the periodic structure. The definition is
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Fig. 2. Left panel: The variation of disorder parameter , as a function of percentage disorder at different hole radii. Right panel: A,C and E represent periodic structure for hole radii of
r=0.15a, r = 0.23a, r = 0.45a respectively, where a is the lattice constant. B,D and F represent the structures at 100% disorder for » = 0.15a, r = 0.23a, r = 0.45a respectively. It can be
seen that, at a radius of 0.15a, there is a large difference between the periodic and 100% disordered structure, while in r = 0.454, the difference between the periodic and 100% disordered
structure is not clearly evident. C and D (r = 0.23a) show the structures of interest in our calculations.
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