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A B S T R A C T

We consider the quantum processor based on a chain of trapped ions to propose an architecture wherein the
motional degrees of freedom of trapped ions (position and momentum) could be exploited as the computational
Hilbert space. We adopt a continuous-variables approach to develop a toolbox of quantum operations to
manipulate one or two vibrational modes at a time. Together with the intrinsic non-linearity of the qubit degree
of freedom, employed to mediate the interaction between modes, arbitrary manipulation and readout of the
ionic wave function could be achieved.

1. Introduction

The current paradigm of implementations of quantum computing
consists in the coherent manipulation of discrete two-level systems, the
qubits, by sequences of quantum gates [1]. Ion traps stand as one of the
most successful experimental implementations of a quantum proces-
sor, a system for which all basic elements required for computation
universality have been demonstrated in proof-of-principle experiments
[2–4] and scalability is not unlikely [5,6].

A chain of ions trapped in a harmonic potential functions as a
quantum register wherein each ion encodes one qubit in energy
eigenstates of its electronic configuration [7]. The external confinement
and the electric repulsion among ions give rise to collective modes of
vibration which are employed to mediate the interaction between any
chosen pair of qubits. Quantum operations are accomplished by
resonant or near-resonant laser pulses with the qubit transitions.
Other internal energy levels of the ions are employed to initialize and
measure the qubits. Even though the specifics of this manipulation
scheme has evolved enormously since its inception [8,9,3,10,11], it
would not be inappropriate to name it as the ‘Cirac & Zoller (CZ)
paradigm’ of ion trap quantum computing. In short, the CZ paradigm
has each ion storing a single qubit in internal electronic energy levels
and different qubits interacting via the quantum information ‘bus’
provided by one or more motional modes.

An alternative route to quantum computation considers physical
observables with continuous spectra – continuous variables (CV) – to

realize the physical encoding and manipulation of quantum informa-
tion [12,13]. In the continuous variables quantum computing (CVQC)
paradigm, Gaussian states and operations are usually considered as the
building blocks of quantum logic [14,15], as well as a single non-
Gaussian operation needed to achieve universality [16,17]. The basic
physical object of quantum computing is embedded in this case in an
infinite-dimensional Hilbert space. And although it may be regarded as
continuous in the eigenbasis of certain observables, it can many times
also be understood as a discrete configuration space in the eigenbasis of
other observables. More concretely, as considered in this paper, a
vibrational mode of the ion chain [18–22] can be either described in
the continuous phase space of position and momentum observables,
e.g. by the Wigner function, or in terms of superpositions of the
quantized energy eigenstates of the harmonic oscillator, the number or
Fock states [23]. The generation, control [24–26] and measurement
[27–29] of vibrational modes have been approached in the recent
literature in various ways: by entangling them with optical resonator
modes [30], using them as equivalent models for the study of
vibrational states of optomechanical systems [31], by generating exotic
quantum states [32,33], or by implementing quantum simulations of
solid state systems [34–36].

In this paper, we investigate the idea of exploiting the vibrational
modes of trapped ions as the physical platform of quantum computing,
i.e. for the implementation of quantum gates in the motional modes of
vibration [37,38]. We consider the feasibility and particularities of
inverting the CZ paradigm to employ the qubit degree of freedom as the
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mediator of interaction among a set of motional modes of vibration.
Even though our proposal can be extended to a system of different
singly trapped ions [39], we focus here on the simplest case of a single
trapped ion and its corresponding set of three vibrational modes as a
starting point. By following this approach, we try to establish the
potential capabilities brought by this minimalistic quantum system and
the likely limitations on the size of the configuration space made
available by this simple change of perspective in the use of the ion trap.
We develop a CV quantum computation toolbox to manipulate each of
the single modes and to make them interact in pairs, in particular to
show that conditional dynamics (entangling gates) would be available.
The proposed quantum gates are realizable by bichromatic laser fields
with tunable frequencies. Readout of the quantum state can be
performed using number-dependent Rabi flops on the qubit [40–42].

This paper is organized as follows. In Section 2, we present the
quantum processor based on the ion trap and recall the basic
manipulation of a single trapped ion by an external laser source.
Section 3 presents the CV quantum gates that can be realized in the
motional modes with bichromatic laser fields. We detail our CVQC
proposal and develop the necessary toolbox of quantum gates in
Section 4. Our concluding remarks follow in Section 5.

2. Basic implementation

2.1. Physical system

In this proposal, the physical objects to be manipulated are the
different oscillation modes of a quantum harmonic oscillator. There are
three available modes in the simplest case of a single trapped ion
oscillator. The size of the Hilbert space associated with each vibrational
mode and available to manipulation in actual experimental conditions
is better quantified in the eigenbasis of the number operators. The basis
for each mode is assumed to be truncated at a maximum phonon
number N, and is hence composed of the eigenstates

N{ 0 , 1 , 2 ,..., }. (1)

The representation of the quantum state in terms of phonon
number eigenstates refers to a ‘particle-like’ description of the quantum
system. The quantum state of the harmonic oscillator also admits a CV
representation in the position and momentum phase space, a ‘wave-
like’ description employing the Wigner function. In phase space,
quantum gates are transformations of the Wigner function. In the
ion trap processor, they can be performed by coupling vibrational
modes to the qubit (internal) degree of freedom by means of bichro-
matic laser light [8,9,43,44]. The qubit is by construction a highly non-
linear physical system – one that saturates with a single quantum –, a
property here employed to generate non-Gaussian operations on the
vibrational modes. Since in our proposed ion trap CVQC architecture
the qubit is only an auxiliary source of non-linearity and coupling
among motional modes, the desired quantum operations must start
and end with quantum states ρ which are separable in the qubit ρq and
motional modes ρm, i.e. we impose that ρ ρ ρ= q m before and after the
application of quantum gates.

The CV toolbox of quantum operations to be developed below can be
separated in Gaussian and non-Gaussian operations. The class of
Gaussian operations maintains as Gaussian an initially Gaussian Wigner
function. There are single- and two-mode Gaussian operations. Single-
mode displacements and squeezers respectively displace the origin of
phase space or the scaling of the position and momentum axis. Both of
them have already been experimentally demonstrated in the ion trap
processor [45,46]. Two-mode operations comprise the beam splitter and
the two-mode squeezer. The beam splitter is a passive transformation that
linearly combines two field modes. The two-mode squeezer, an active
transformation, can be understood as two single-mode squeezers simul-
taneously acting on orthogonal combinations of two modes. One can also
include two-mode conditional gates as generalizations of such operations.

2.2. Hamiltonian of the ion trap

Our CVQC toolbox is built upon the simplest implementation of an
ion trap processor: a single ion furnishes the qubit and three
independent modes of vibration. We consider in this section the basic
coherent manipulation of a single trapped ion by an external source of
coherent light [47,23].

To establish notation, we recall below the elementary dynamics of
one qubit and two motional modes coupled to it by a monochromatic
external laser. The generalization of the interaction to three oscillator
modes and bichromatic lasers capable of producing the desired
quantum gates follows next.

The ion trap Hamiltonian reads in this case as

H H H= + ,I0 (2)

where HI is the interaction Hamiltonian discussed below and H0
provides the free dynamics of qubit and motional modes,

H ω σ ω a a ω b b= 1
2

+ + .z a b0 0
† †

(3)

The qubit transition frequency is ω0 and its two-dimensional Hilbert
space is described in terms of the excited e and ground g internal
states of the ion, with which we write σ e e g g= −z . The two
independent vibrational modes under consideration are described in
terms of the annihilation operators a and b and the respective creation

operators satisfying the commutation relations a a b b[ , ] = [ , ] = 1† †
.

Their oscillation frequencies are ωs, where s a b∈ { , } denotes the mode.

The simplest model of interaction Hamiltonian H d E= −
→

·
⎯→⎯

I com-
prises a dipolar coupling between the ion and an external coherent light

source. The atomic dipole operator is d μ σ σ
→

= →( + )+ − , with dipole
moment μ→ and operators σ e g=+ and σ g e=− . The light source

drives the ion by means of the electric field E E ik r iω t
⎯→⎯

=
⎯→⎯

exp(
→

·→ − )L0

with wavevector k
→

and frequency ωL. The interaction Hamiltonian can
be made to account for the free evolution associated with H0 (interac-
tion picture), yielding

[

]

H Ωσ e iη ae a e

iη b e b e

= ℏ exp ( + )

+ ( + ) + h. c. ,

͠
I

iδt
a

iω t iω t

b
iω t iω t

1
2 +

− − †

− †

a a

b b (4)

where δ ω ω= −L 0 is the radiation-atom detuning, Ω μ d= |→·
→

|/ is the
Rabi frequency, and η kx θ= coss s are the Lamb-Dicke parameters,
defined in terms of the typical scale of the ground state oscillator
wavefunction x mω= /(2 )s s and the direction of propagation θ of the
laser with respect to the direction of vibration of mode s. Typical
experimental conditions in optical qubits imply η ≪ 1s , values for which
the Lamb-Dicke regime can be evoked to expand the interaction
Hamiltonian in powers of ηs.

The CV quantum gates we consider in the next section are obtained
by expanding the interaction Hamiltonian up to second order in ηs
[48,49], as

H H η H η H η H

η H η η H η

= + + −

− − 2 + ( )

͠
I a a b b a a

b b a b ab s

(0) (1) (1) 2 (2)

2 (2) (2) 3
(5)

The effect of each Hamiltonian is easily understood in the Fock basis of
the motional states. The single-quantum saturation associated with the
qubit degree of freedom plays the fundamental role of allowing the
coherent manipulation of single quanta in the motional modes.

The zeroth-order term is the carrier transition Hamiltonian,

( )H Ω e σ e σ= 1
2

′ + ,iδt iδt(0) −
+ − (6)

resonant for δ = 0. The Rabi frequency is modified due to the motional
coupling as Ω η η Ω′ = (1 − − )a b

2 2 . This Hamiltonian induces qubit
transitions without affecting the motional state of the ion. It may be
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