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A B S T R A C T

We analytically and numerically investigate the propagation dynamics of initially chirped symmetric Airy pulses
in an optical fiber. The results show that the positive chirps act to promote the interference in generating a focal
point on the propagation axis, while the negative chirps tend to suppress the focusing effect, as compared to
conventional unchirped symmetric Airy pulses. The numerical results demonstrate that the linear propagation
of chirped symmetric Airy pulses depend considerably on the chirp parameter and the primary lobe position. In
the anomalous dispersion region, positively chirped symmetric Airy pulses first undergo an initial compression,
and reach a foci due to the opposite acceleration, and then experience a lossy inversion transformation, and
come to the opposite facing focal position. The impact of truncation coefficient and Kerr nonlinearity on the
chirped symmetric Airy pulses propagation is also disclosed separately.

1. Introduction

The Airy wave packet was first found as a solution to the
Schrödinger equation for a free particle in 1979 [1]. Since the first
experimental observation of accelerating finite energy Airy beams
equipped with unique characteristics, such as self-acceleration, quasi-
diffraction free, and self-reconstruction [2–4], great attention has been
devoted to the propagation, manipulation, generation, and application
in a dispersive or in free space [5–8]. Spatially truncated Airy beams
have been applied in creating curved plasma channels [9,10], particle
clearing [11], optical micromanipulation [12], and are capable of
recovering from spatial obscurations due to their energy redistribution
mechanism [4]. Airy beams are also useful for imaging in scattering
media [13], all optical routing [14], and light bullets generation [15–
17].

As the temporal dispersive equation and the spatial diffraction
equation are isomorphic [18], attributes of spatial Airy beams are
directly translated to the corresponding temporal Airy pulses. In spite
of similar mathematical descriptions of Airy pulses and Airy beams,
there remains an important physical difference between temporal and
spatial accelerations. That is, an accelerating beam bends its trajectory
in space, whereas only the acceleration of Airy pulse corresponds to a
change in the velocity of the intensity peak of the pulse that manifests
as self-acceleration or self-deceleration depending on its tails behind or

in front of the main peak [19,20]. Airy pulses, whose temporal field
envelope is described by an Airy function, can be formed by virtue of a
cubic spectral phase imposed via either third-order dispersion or a
pulse shaper. Extensive theoretical and numerical studies have been
performed on the study of linear and nonlinear dynamics of Airy pulses
under second- and/or third-order dispersion with or without the
presence of Kerr nonlinearity [21–24]. The experimental and numer-
ical investigations on supercontinuum generation have been carried
out by using a femtosecond Airy pulse in photonic crystal fiber [25].
The propagation of decelerating Airy pulses in non-instantaneous cubic
medium is investigated both theoretically and numerically [26].
Furthermore, periodic dispersion modulation [27], initial quadratic
phase modulation [28] and the interaction with solitons [29] have also
been investigated.

In practice, the laser system based on the chirped pulse amplifica-
tion technology involves chirp in pulse generation, propagation and
amplification. Consequently, the pulses emitted from laser sources are
often chirped. Frequency chirp can also be imposed externally and is
expected to engineer the laser pulse propagation. It is demonstrated
that the frequency chirp can influence laser self-focusing significantly
[30,31]. Initial frequency chirp have also been used to control super-
continuum generation [32], filamentation [33,34] and pulse compres-
sion [35]. The electron density and energy deposition in the filament
channel can be tuned by changing input chirp of laser pulse [36]. More
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recently, Janus waves are introduced in the case of accelerating ring-
Airy beams, which achieve the appearance of two focal regions after the
action of a focusing lens [37]. Dual autofocusing properties of chirped
circular Airy beams with a quadratic phase are investigated analytically
and numerically [38]. Meanwhile, Zhang et al. investigated the effect of
initial frequency chirp on Airy pulse propagation in an optical fiber,
and found that it travels with an opposite acceleration after an initial
compression phase if both group-velocity dispersion and chirp have the
opposite signs [39]. And the dynamics of a chirped Airy pulse in a fiber
under the action of third-order dispersion also have been investigated
[40].

Inspired by these pioneers researches, in this paper, we are devoted
to the study of propagation properties of symmetric Airy pulses
imposed an initial frequency chirp, and disclosed the novel character-
istics of multi-collisions generation. The paper is structured as follows.
In Section 2, we briefly introduce the theoretical model and the
analytical results. In Section 3, we discuss the impact of the chirp
parameter, the primary lobe position and nonlinear coefficient for the
occurrence of collisions in numerically. Section 4 summarizes the
results of the work.

2. Theoretical model and analysis

The propagation of optical pulses in an optical fiber can be
described by the well-known nonlinear Schrödinger equation (NLSE).
To simplify the model and broaden the applicability of the results, we
normalize all the variables including the light field that is normalized so
that its peak input value is unity. The coordinate are normalized as
follows: temporal coordinate T is normalized to incident pulse width
T0, propagation distance Z is measured in units of the dispersion
length, where β2 is the group velocity dispersion (GVD) parameter
L T β= /D 0

2
2 . The normalized NLSE then takes the form as [18]
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Here the parameter N γT P β= /| |0
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0 2 , represents the strength of
Kerr nonlinearity, where P0 and γ are the input peak power and the
nonlinear coefficient respectively. The width of the main lobe of Airy
pulse is usually used as a temporal scale.

The linear propagation of Airy pulse is studied by setting N=0 in Eq.
(1). U Z T( , ) satisfies the following liner partial differential equation as
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By the means of the Fourier Transform method, the general
solution of Eq. (2) is given as
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whereU ω(0, )∼
is the Fourier transform of the incident field at Z = 0 and
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In this paper, the symmetric Airy pulses with an initial chirp is
taken into consideration:

U Z T Φ T T Φ T T iCT( = 0, ) = [ ( + ) + ( − )]exp(− ).B B
2 (5)

where Φ Z T Ai T aT( = 0, ) = ( )exp( ) represents finite energy Airy
pulse [2]. a is the truncated coefficient, T > 0B is the primary lobe
position and C represents the initial chirps.

Substituting Eq. (5) into (3), the evolution of symmetric Airy pulses
can be approximately described by:
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where the condition of CZ1 − 2 is unequal to 0.
As expected the resulting amplitude distribution is the result of the

interference of the two waves. From Eq. (6), under the condition of
( CZ1 − 2 ≠ 0), it is easy to be deduced that the symmetric parabolic
trajectories of chirped symmetric Airy pulses follows the modified path
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Based on Eq. (7), we further arrived at two special positions on
propagation axis by setting T T= = 01 2 as follows
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Eqs. (6)–(8) will be able to apply for estimating some dynamical
features of chirped symmetric Airy pulses. In fact, when compared to
numerical solution latter, we easily deduce that the parameter Z1

approximately corresponds to the first focus position, while the
parameter Z2 just corresponds to the second focus position for the
chirped symmetric Airy pulses on linear propagation. When the chirp
parameter equals to zero, the initial focus position Z T= 2 B0 . When
C T < − 1/4B , no foci can be obtained as Z < 01 ; whenC T > 1/4B , two
focus will be presented since Z > 02 ; when C T−1/4 < < 1/4B , only
one fucus point can be reached since Z Z> 0, < 01 2 . From the result of
Ref. [37] and our analysis, as long as Z ≠ 00 , we may obtain the
relationship among these fucus positions as follows

Z Z Z Z
C1 + 1 = − 1 + 1 = 2 .

0 2 0 1 (9)

Here, the parameter C T= 1/(4 )cr B is defined as a critical chirp
value. According to the sign of the chirp parameter C, from Eq. (8), we
can directly arrive at some interesting conclusions as follows: When
C = 0, it present the evolution of unchirped symmetric Airy pulse, there
exists the real focus position at Z T= 2 B0 and the virtual collision
point lies on the opposite side (at Z− 0). When C > 0, the real focus
point always occurs since Z1 is positive value whatever the magnitude
of the chirp parameter C. The second foci will occur only if
C C T> = 1/(4 )cr B , while it is entirely suppressed since Z < 02 if

C C0 < < cr . Moreover, one notes that both the focus positions Z1

and Z2 monotonously decrease with the increase of parameter C,
implying that the large chirps may lead to the enhanced focusing
effect. When the parameter TB increases, the first focus position Z1

monotonously increases while the second focus position Z2 monoto-
nously decreases. Therefore, the length between the two foci is
accordingly decreased. When C < 0, the striking feature is that the
chirped symmetric Airy pulses will not exhibit the second focusing
effect since Z2 is always negative value whatever the magnitude of the
chirp parameter C. However, there may exist the first foci if

C C− < < 0cr . Therefore, the focusing effect will be completely sup-
pressed since Z < 01 if C C< − cr .

Fig. 1 shows the unchirped (left column) and positively chirped
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