

Contents lists available at ScienceDirect

Optics Communications

journal homepage: www.elsevier.com/locate/optcom

Deep-red polymer dots with bright two-photon fluorescence and high biocompatibility for *in vivo* mouse brain imaging

Nuernisha Alifu^a, Zezhou Sun^c, Abudureheman Zebibula^d, Zhenggang Zhu^e, Xinyuan Zhao^f, Changfeng Wu^c, Yalun Wang^{a,*}, Jun Qian^{a,b,**}

^a State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang University, 310058 Hangzhou, China

^b State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou 510640, China

^c State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China

^d Department of Urology, Sir Run-Run Shaw Hospital College of Medicine, Zhejiang University, Hangzhou 310016, China

^e Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Zhejiang University, Hangzhou, Zhejiang 310020, China

^f Bioelectromagnetics Laboratory, Institute of Environmental Health, Zhejiang University School of Medicine, Hangzhou 310058, China

ARTICLE INFO

Keywords: P dots Two-photon fluorescence Brain vascular imaging *in vivo* Deep-tissue

ABSTRACT

With high contrast and deep penetration, two-photon fluorescence (2PF) imaging has become one of the most promising *in vivo* fluorescence imaging techniques. To obtain good imaging contrast, fluorescent nanoprobes with good 2PF properties are highly needed. In this work, bright 2PF polymer dots (P dots) were applied for *in vivo* mouse brain imaging. Deep-red emissive P dots with PFBT as the donor and PFDBT5 as the acceptor were synthesized and used as a contrast agent. P dots were further encapsulated by poly(styrene-co-maleic anhydride) (PSMA) and grafted with poly(ethylene glycol) (PEG). The P dots-PEG exhibit large two-photon absorption (2PA) cross-sections ($\delta \ge 8500$ g), good water dispersibility, and high biocompatibility. P dots-PEG was further utilized first time for *in vivo* vascular imaging of mouse ear and brain, under 690–900 nm femtosecond (fs) laser excitation. Due to the large 2PA cross-section and deep-red emission, a large imaging depth (~720 µm) was achieved.

1. Introduction

Fluorescence nanoprobes have played an important role in bioimaging, due to their convenience to usage, as well as excellent sensitivity [1,2]. To improve the spatial resolution of bioimaging, many efforts have been made to develop various types of fluorescence microscopy [3-5]. Among these techniques, two-photon fluorescence (2PF) imaging had become one of the most prominent, for their deeper penetration depth, weaker tissue autofluorescence, less photodamage and less photobleaching [6-9]. Apart from this, to improve the collection efficiency of fluorescence signals, emissions in deep-red/ near-infrared (NIR) region are advantageous because the scattering caused by tissue would be smaller for longer wavelengths emissions [10,11]. So nanoprobes with both of their excitations and emissions in the deep-red/NIR region are eagerly needed. These nanoprobes include upconversion nanoparticles, organic dyes and many other nanoparticles, while most of them have poor 2PF intensity or poor biocompatibility [12,13].

Semiconducting Polymer dots (P dots) are new generation of promising fluorescence nanoprobes for their super fluorescence brightness, good photostability and excellent biocompatibility [14–17]. Thence, considerable efforts have been made to synthesize various types of P dots with distinct emissions [18,19]. Meanwhile, P dots with good 2PF properties (high 2PA cross-section and high quantum yield) are still in great need [20,21]. Recently, researchers had synthesized some P dots with good 2PF properties, while there was no systematic work on *in vivo* brain vascular imaging yet [22,23].

In this paper, bright 2PF P dots with donor-acceptor (D-A) structure were utilized for *in vivo* mouse brain imaging. PFBT with good visible light harvesting were used as the donor and PFDBT5 with deep-red emission was used as the acceptor [24,25]. Then they were further encapsulated with poly(styrene-*co*-maleic anhydride) (PSMA) to form polymer matrix. The matrix structure endowed P dots with two important features: deep-red emission and high quantum yield. P dots were further conjugated with long-chain poly(ethylene glycol) (PEG) molecules, to avoid the capture by the reticuloendothelial/degradation

* Corresponding author.

E-mail addresses: wywy@zju.edu.cn (Y. Wang), qianjun@zju.edu.cn (J. Qian).

http://dx.doi.org/10.1016/j.optcom.2017.04.001

^{**} Corresponding author at: State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang University, 310058 Hangzhou, China.

Received 19 January 2017; Received in revised form 27 March 2017; Accepted 1 April 2017 0030-4018/ © 2017 Elsevier B.V. All rights reserved.

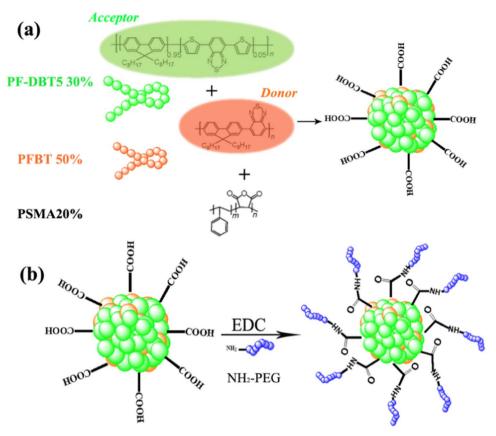


Fig. 1. Synthesis and functionalization routine of P dots. (a) Synthesis process of P dots, (b) Encapsulating P dots with NH₂-PEG. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

system and to increase the circulation time [26,27]. After that, chemical stable and biocompatible P dots were obtained. The 2PA cross-sections of P dots were measured under 720–960 nm fs laser excitation, and they were found to have the largest value at 810 nm fs laser excitation. P dots were then used as fluorescence probes for 2PF imaging and *in vivo* 2PF imaging of mouse ear and brain angiography was realized under a commercial 2PF imaging system (720–960 nm). A large penetration depth of 720 μ m was obtained under the excitation of 810 nm fs laser excitation, mainly due to the large 2PA cross-section and the deep-red emission of P dots.

2. Experimental section

2.1. Materials and methods

Functionalized P dots in aqueous solution were prepared by using a modified nanoprecipitation method according to literature [25], as shown in Fig. 1a. The prepared P dots consist of donor-acceptor polymer blends, in which the visible-light harvesting polymer PFBT is the donor and the efficient deep-red emitting polymer PFDBT5 is the acceptor. The blending ratio of P dots is 0.6 (PF-DBT5 to PFBT in weight), and at this ratio P dots exhibits a broad visible absorption band as well as an efficient deep-red emission (650 nm) with a high quantum yield of 57% [25]. Surface bioconjugation was then performed by utilizing the EDC-catalyzed reaction between carboxyl P dots and the amine-containing NH₂-PEG, as shown in Fig. 1b. The synthesized P dots would possess bright deep-red fluorescence and good biocompatibility.

The absorption spectra of P dots were measured by a Shimadzu UV2550 UV–vis–NIR scanning spectrophotometer. Morphologies of P dots were captured by a JEOL JEM-1200EX transmission electron microscope (TEM) operated at 160 kV. TEM samples were prepared by

casting 10 μ L of P dots aqueous solution on copper grids and dried at room temperature. The 1PF ($\lambda_{excitation}$ =450 nm) and 2PF spectra of P dots ($\lambda_{excitation}$ =810 nm fs laser excitation) were measured by a homebuilt system (in Fig. S2) and were collected by a spectrometer (PG2000, Ideaoptics Instruments).

2.2. Animals' preparation

All the animal experiments were performed strictly in compliance with the requirements and guidelines of the Institutional Ethical Committee of Animal Experimentation of Zhejiang University. The ICR mice (~18 g, female) were obtained from the Laboratory Animal Center of Zhejiang University (Hangzhou, China). The mice were housed in cages at 24 °C with a 12 h light/dark cycle and were fed with standard laboratory water and chow.

2.3. Histology

24 h and 50 days after the injection of P dots (in 300 μ L 1× PBS, 1600 ppm), experimental mice (injected with P dots), as well as control mice (without P dots injection), were sacrificed. Their major organs (heart, liver, lung, kidney, brain and spleen) were removed for histological analysis. Tissue samples were harvested and fixed in 4% paraformaldehyde overnight at 4 °C. Then the samples were embedded in paraffin, sectioned, and stained with hematoxylin and eosin (H & E). The histological sections were imaged under an inverted optical microscope (with a 20×objective lens).

2.4. 2PA cross-section measurements

Two-photon action cross-section ($\eta\delta$) is a parameter describing how bright a fluorophore is under two-photon excitation [24,28]. It is Download English Version:

https://daneshyari.com/en/article/5449362

Download Persian Version:

https://daneshyari.com/article/5449362

Daneshyari.com