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The propagation of plasmonic waves in bilayer graphene is studied based on the classical electrodynamics. The
interactions between conduction electrons confined to move on the surface of each layer are taken into account
via the two-dimensional linearized hydrodynamic model. The energy theorem of electrodynamics is cast in a
form which yields expressions for energy density and energy flow of p-polarized surface plasmon polariton
waves in bilayer graphene. Numerical results show that the presence of two layers causes the appearance of two

branches in the dispersion relation that introduce alterations in the physical behavior of the energy, power flow
and the energy transport velocity, in comparison with the results of monolayer graphene.

1. Introduction

Following the discovery by Novoselov et al [1] of graphene, this
truly two-dimensional (2D) electronic system has opened new frontiers
in solid state physics due to its unique and superior electronic and
optical properties [2—4]. Previous works demonstrated that monolayer
graphene can support p-polarized or transverse magnetic (TM) surface
plasmon polariton (SPP) waves [5-10]. Also, Mikhailov and Ziegler
[11] predicted that monolayer graphene supports unusual transverse
electric (TE) waves in a well defined and narrow frequency window.
Then, Bludov et al. [12] discussed the possibility of nonlinear TE
plasmonic wave oscillations on monolayer graphene.

Furthermore, bilayer graphene (BLG) has attracted much attention
for fundamental physics as well as for possible technological applica-
tions. In this way, Wang and Chakraborty investigated the Coulomb
screening properties and collective excitations in BLG [13] and BLG
under a perpendicular electric bias [14]. Borghi et al. [15] studied the
dynamical response functions and collective modes of BLG. Then,
Sensarma et al. [16] analytically studied the dynamic screening
properties of doped BLG systems within the random phase approxima-
tion and Jablan et al. [17] predicted the existence of TE plasmons in
BLG in addition to the TM plasmonic waves [18,19]. Also, within the
framework of 2D linearized quantum hydrodynamic model, Li et al.
[20,21] investigated the interactions of a charged particle with two-
layered 2D quantum electron gases as a simple model of BLG.

Nevertheless, no explicit calculation can be found for energy, power
flow and the energy transport velocity associated with the plasmonic
waves of BLG. We note the presence of two layers introduce new
features which are the result of the combined effect of the geometry.
Therefore, for BLG structure, we expect new physical behavior of the
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energy, power flow and energy transport velocity of plasmonic waves,
in comparison with those obtained for monolayer graphene [22]. The
aim of the present paper is to provide such an account, where we use
the classical electrodynamics in conjunction with a 2D linearized
hydrodynamic model [22] for electronic excitations on graphene sur-
face, in order to study the plasmonic properties of BLG.

2. Formulation of the problem

Fig. 1 depicts schematic view of two laterally infinite graphene
layers in a Cartesian coordinate system with coordinates (x, y, z). We
define (x, y, z;)) to represent the coordinates of a point on the jth
graphene surface z =z, (with j=1,2). In the present structure, a
substrate with dielectric constant ¢; is supposed to occupy the region
z < z underneath the BLG. Also, two graphene layers are separated by
a dielectric material of thickness z, — z; = d and dielectric constant eo,
whereas the region z > z, is assumed to be a semi-infinite insulator
with dielectric constant e3. Each graphene layer is modeled as a 2D
Dirac massless electron fluid with a fixed equilibrium density of
electrons having a typical value of ny = 103cm=2 [23,24].

Now, we assume that #;(x, 1) is the first-order perturbed density
(per unit area) of the homogeneous electron fluid on the jth graphene
surface, due to the propagating p-polarized SPP waves parallel to the
jth layer along the x-direction. Based on the 2D linearized hydro-
dynamic theory [22,25], one may obtain the linearized continuity
equation, for jth graphene surface, as

0 (x, 1) + ngoyi (x, t) = 0, ¢}

and the linearized momentum-balance equation,

Received 13 January 2017; Received in revised form 27 February 2017; Accepted 7 March 2017

Available online 11 March 2017
0030-4018/ © 2017 Elsevier B.V. All rights reserved.


http://www.sciencedirect.com/science/journal/00304018
http://www.elsevier.com/locate/optcom
http://dx.doi.org/10.1016/j.optcom.2017.03.021
http://dx.doi.org/10.1016/j.optcom.2017.03.021
http://dx.doi.org/10.1016/j.optcom.2017.03.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2017.03.021&domain=pdf

A. Moradi

ZA
€3
Z) = d — — I EEEEEE——
Graphene layer €
Z] = 0 — — I EEEEE—— ——
X
€1

Fig. 1. The schematic view of BLG structure separated by a thin dielectric medium of
thickness d.
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where e is the element charge and m, = 7 /vy is the effective mass of
electron in graphene. We note that kr = /ang, and vp = ¢/300 [with ¢
being the speed of light in free space] are Fermi wave number, and
Fermi speed in graphene, respectively [25]. Furthermore, vj (x, 7) is the
first-order perturbed values of velocity field of the electrons residing on
the jth layer. In the right-hand side of Eq. (2), the first term is the force
on electrons due to the tangential component of the electric field,
evaluated at the graphene surface z = z;, the second term is the force
due to the 2D massless Dirac-fermion quantum statistical pressure in
the electron fluid, with a = vZ/2.

To go further, we assume that all physical quantities (electron
density perturbation and electromagnetic fields) vary as ¢/®~®) where
k is the component of the wave vector along the x-axis. Therefore, from
Egs. (1) and (2) after the elimination of the velocity v;, one obtain

e a
aIV_/‘)c (x, 1) = _7Ex|z=z,' - 7axnj (x, 1),
m, no

ieng k

= E, (2)l.=
m, w* — ak? <@

j z=zj>

(3)

and n;(x, 1) = Nje!®~2)_ By using Maxwell equations, electric compo-
nent E,, of the TM waves can be written as

. = AeXizeike=on), @
in the region z < z,

Ey, = (Be¥?* + Ce*27) ¢l k=i, (5)
in the region z < z < z, and as

Ej3, = De™*3%¢i(keon), ©)

in the region z > z,, where Kf =k? - kf, k= Jewlc, with 2 =1, 2 and
3. The E, and H,, components of the TM waves can also be calculated
from Maxwell equations. The field components have to satisfy the usual
boundary conditions at z = z; that is, continuity of E, and discontinuity
of E,, due to the polarization of the electron gas on the BLG surfaces.
Applying the boundary conditions at z =z =0 and z = z = d on the
components E, and E, one can determine the coefficients A, C, and D
as

A=(1-1)%B,

K1 (7)
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and ¢ is the permittivity of free space. In the following, we obtain the
dispersion relation which gives us information on the waves in order to
obtain the energy flow, energy density and energy transport velocity of
plasmonic waves of the system. Applying the mentioned boundary
conditions the dispersion relation for the p-polarized SPP waves can be
obtained as

(10)
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From the above dispersion relation, we obtain two branches for
defining the resonant frequencies of p-polarized SPP waves with one
branch having higher frequency than the bare spectrum for monolayer
graphene and other branch that is below the dispersion curve of
monolayer graphene (see Section 3).
Also, the energy density u; and the energy flow density S;, on the jth
graphene surface (z = z;) can be written as [22]:

an

meng > me o
uj = Viy + —an;,
! 2 oy Y 12)
Spx = Mean; V. 13)

Eliminating v;,, and n; in Egs. (12) and (13) by using Egs. (1)—(3), the
energy and energy flow densities on jth graphene surface may be
expressed, in complex notation, as:
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In the insulators for z # z;, we have:

1

1(2) = 7 (oGl + poHyy ). (16)
S, ()——lR [E H]

x(2) = ) €L 5], 17

where p is the permeability of free space and we put y, = 1. The total
energy density and flow of energy associated with the surface waves are
determined by an integration over z [22,26]. We have:

21 5 22
U= [Tu@d+ue=n+ [T n@d+ @ =2

1
+o0
+ f u3(z2)dz,
2

(18)
21 22
S, = S (@)dz + S/ (z = z) + So, (2)dz + S (z = 2
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After doing some algebra, the energy density per unit surface area and
the energy flow per unit width are given by
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