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A B S T R A C T

This paper tests some traditional methods to analyze dynamic laser speckle regarding their filtering actions.
Additionally, we propose two new biospeckle indices based on the binary entropy, including one that avoids
filtering the original signals. The work was based on theoretical developments and was validated using a drying
paint monitoring test. We proved that the dynamic laser speckle, or biospeckle, is compromised by filtering
actions and that it is possible to elect an index that does not provide filtering.

1. Introduction

The dynamic laser speckle phenomenon is a source information in
an illuminated material, and its ability to monitor activity started to be
used not far from when the first laser was built. Additionally, as long as
the phenomenon presented a reliable alternative to monitor the
multitude of changes originated in biological samples, it was also
named as biospeckle laser [1].

In order to viabilize the biospeckle laser phenomenon as a feasible
sensor, many approaches have been made to suggest experimental
configurations and, particularly, signal processing strategies. The
autocorrelation of the speckle pattern in time was one of the alter-
natives presented [2,3] using the space–time speckle [2,4] or the whole
matrix in time [3] to measure the memory of a signal and from that to
extract a number which we call as an index. In turn, the space–time
speckle, also known as time history of the speckle pattern [5], was
likely used in second order statistics procedures such as the Inertia
Moment (IM) method [5] or in its derivative the Absolute Value of the
Differences (AVD) method [6]. All these methods are known as
numerical methods and they are applied in homogeneous regions of
interest (ROIs). In other hand, beyond the numerical methods, there
are many approaches that create maps of activity from the pattern's
collections using the same principle adopted in the numerical out-
comes, i.e., the subtraction of consecutive patterns [7–9].

Therefore, since we are working with signal in time, some opera-
tions represent the filtering of frequencies that could be useful to
associate the outcome of biospeckle laser to the biological phenomena
under monitoring. Frequency analysis associated to biospeckle laser

proved that the signal can be split and that some components are
linked to different sources of the biological activity [10,11].

Our hypothesis is that most of the known methods damp the signal
in a way that compromise the correlations of the biospeckle indices
with the biological activity. Thus, the aim of this work was to prove that
some methods can damp frequency components of the biospeckle laser
signal, additionally presenting an alternative index free from damping.

2. Entropy and standard deviation

To get a signal interpretation perspective, from point of view the
statistic and the information theory, it is important to know some
operations very implemented in these fields; thus, we have the
standard deviation and the entropy. These operations have been
proved, in the literature, as important tools to describe the temporal
behavior of the signals. In the next sections we describe the character-
istics of these operations with more details.

2.1. Entropy of a digital signal

The (binary) entropy [12,13] Hb(X) of a random variable X that
represents a digital signal X(k) is defined by Eq. (1):

∑H X X x X x( ) = − Pr( = )log (Pr( = ));b
i

M

i i
=0

−1

2
(1)

where X xPr( = )i is the probability of an arbitrary value of the random
variable X be equal to x x x{ , ,…, }M0 1 −1 , where M is the number of
quantization levels of X(k).
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The entropy Hb(X) represents the amount of bits that are necessary
as minimum to transmit the information contained in each sample of
X(k). Thus, if we choose M different quantization levels to map the
value of each sample of X(k) and we code these with Mlog ( )2 bits per
sample, after the calculus of entropy, we note that the information
contained in each sample of the signal X(K) can be compressed to
Hb(X) bits, and consequently exist a codification method that only
would need 2H X( )b quantization levels. So that

H X M( ) ≤ log ( ).b 2 (2)

The entropy Hb(X) measures the information produced by a random-
ness level in the amplitude values of each sample of a random variable
X, not considering the temporal position (frequency of signal) or
amplitude values (signal power) of samples. For example, given a
digital signal X(k); if we define the digital signal Xf(k), as a temporal
reordering of the samples of X(k) in increasing order of amplitude, and
the digital signal X k X k( ) = 10 ( )p ; then we can assure that
H X H X H X( ) = ( ) = ( )b b f b p .

2.1.1. Normalized entropy
Usually we want to compare the quantity of information of X (this is

Hb(X)) in relation to the quantity of bits by sample, Mlog ( )2 , used in
your codification, and thus to know if the randomness of X justify the
use of this bits quantity. Therefore, the entropy can be normalized to
have a maximum value of 1.0 and here we define the normalized
entropy of X in Eq. (3):

H X H X
M

( ) ≡ ( )
log ( )N

b

2 (3)

so that H X0 ≤ ( ) ≤ 1N .

2.2. Relation between the standard deviation and the mean deviation

If we have a random variable X with a Gaussian distribution (mean
μX and standard deviation σX), that represents a signal X(k) with L
samples; then, for a very large number L of samples (L → ∞), we can
get experimentally the next values,

∑μ X l≡ ( ),X
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∑σ X l μ≡ | ( ) − | ;X
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thus, the relation [14] between the mean value μX, the standard
deviation σX and the mean absolute deviation dX, can be expressed by
Eqs. (6) and (7)

∑d X l μ≡ | ( ) − |,X
l

L

X
=0
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(6)
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3. Biospeckle indices

3.1. Initial concepts

In relation to biospeckle analysis, there are many types of indices
(biospeckle indices) that use light intensity returned from samples as
speckle patterns (biospeckle signal), to measure indirectly the activity
level of a biological material (biological activity). These biospeckle
indices show some characteristics of the biospeckle signal; so that,
additional studies must be responsible to set the relation between these
characteristics with the biological activity, see Fig. 1; in this sense, here
we encourage to use the term biospeckle index instead of “activity

index” or even “biospeckle activity” [3] because it is necessary to
establish whether there is a linear, nonlinear, direct or inverse relation
between the biological activity and the biospeckle index.

Thus, to understand all this process it is necessary to have a clear
definition of biological activity, biospeckle signal and biospeckle index,
among others.

3.1.1. What is the biological activity?
Mosby's Dictionary of Medicine [15] defines biological activity as:

“the inherent capacity of a substance, such as a drug or toxin, to alter
one or more chemical or physiological functions of a cell, tissue, organ,
or organism”. Knowing this, it is easy to see that the biological activity
is related to many parameters, so that the measured biospeckle signal
has the information of a mixture of all these parameters, and
additionally the information of the sample setup; for example, the
laser light power, incidence angle of beam, frequency sampling, etc.

3.1.2. What is the biospeckle signal?
Given that the analysis of biospeckle phenomenon is based on

processing the information of a pixel set, it is better to define the
biospeckle signal in terms of a light intensity, I(k), of a generic pixel in
the instant k; being I(k) a digital function with a range of values,
traditionally, between I k0 ≤ ( ) ≤ 255. Thus, we define biospeckle signal
as the set of samples obtained of the function I(k) when we evaluate
each value of k, k L∀ 0 ≤ ≤ − 1, being L the number of samples of
signal.

3.1.3. What is the biospeckle index?
A biospeckle index is a number, returned after performing a digital

signal processing, and it represents or describes one or more char-
acteristics of the biospeckle signal. The relation between the biospeckle
index and these characteristics can be linear or not, but it is desirable
that they have a biunivocal correspondence.

Many biospeckle indices were designed to describe the behavior of a
specific characteristic of a biospeckle signal I(k). These analyses were
made focusing in statistical or frequency behavior, among others. In
the next subsections it is shown some types of signal processing and
biospeckle indices seen in the literature.

3.1.4. Time history speckle pattern
The time history speckle pattern (THSP) is a matrix that is created

performing a digital processing over the biospeckle signal, and it is
used to group samples of light intensities in a set of φ pixels
I I I I{ , , ,…, }φ0 1 2 −1 , so that each line of this matrix contains L samples
of one pixel separated by columns. Eq. (8) represents the k-th column
of the THSP matrix,
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by other side, a line is represented by Eq. (9)

THSP m I I k I L( , :) = ( (0) … ( ) … ( − 1))m m m (9)

meaning all samples of m-th pixel, so that I k THSP m k( ) ≡ ( , )m .

3.1.5. Normalized co-occurrence matrix
The normalized co-occurrence matrix (NCOM) [16,5] is repre-

sented by the variable N and it can be extracted from the THSP matrix,
showing the probability of a pixel I(k), or set of pixels in the THSP, to
have a light intensity jump from a value I k i( ) = to a value I k j( + 1) =
at any instant k. Thus, the element N i j( , ) of the matrix N represents

N i j i j( , ) ≡ Pr( → ). (10)

Given that, the measured light intensity level, i and j, in a pixel is
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